【題目】已知函數(shù),其中、是非空數(shù)集,且,設(shè),;

1)若,,求;

2)是否存在實(shí)數(shù),使得,且?若存在,請(qǐng)求出滿足條件的實(shí)數(shù);若不存在,請(qǐng)說明理由;

3)若,且,,是單調(diào)遞增函數(shù),求集合、

【答案】(1) ;(2) ;(3) ,其中或者,其中或者

或者

【解析】

(1)根據(jù),分別代入對(duì)應(yīng)的分段區(qū)間求解集合的范圍再求并集即可.

(2)先假設(shè)推出矛盾,故可得.代入可得,再分析當(dāng)時(shí)與題設(shè)矛盾可得.

(3)先根據(jù)函數(shù)的單調(diào)性確定,,再證明在上存在分界點(diǎn)的話,這個(gè)分界點(diǎn)應(yīng)該滿足的性質(zhì),最后根據(jù)此性質(zhì)寫出滿足題意的集合即可.

(1)因?yàn)?/span>,所以,

因?yàn)?/span>,所以.

.

(2),,不符合要求.

所以,所以,因?yàn)?/span>,所以,解得.

.

因?yàn)?/span>,所以的原象

所以,,與前提矛盾.

(3)因?yàn)?/span>是單調(diào)遞增函數(shù),所以對(duì)任意的,所以

所以,同理可證.若存在,使得,

,于是,

,

所以,同理可知

,,

所以.

所以,,

,此時(shí) .

對(duì)于任意,中的自然數(shù),

.所以.

綜上所述,滿足要求的必有如下表示:

,其中或者

,其中或者

或者

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,二面角的大小為120°,點(diǎn)在棱上,且,點(diǎn)的重心.

1)證明:平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)在平面直角坐標(biāo)系xOy中,A(﹣2,0),B0,﹣2),M是曲線C上任意一點(diǎn),求ABM面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明用數(shù)列{an}記錄某地區(qū)201912月份31天中每天是否下過雨,方法為:當(dāng)?shù)?/span>k天下過雨時(shí),記ak1,當(dāng)?shù)?/span>k天沒下過雨時(shí),記ak=﹣11≤k≤31);他用數(shù)列{bn}記錄該地區(qū)該月每天氣象臺(tái)預(yù)報(bào)是否有雨,方法為:當(dāng)預(yù)報(bào)第k天有雨時(shí),記bk1,當(dāng)預(yù)報(bào)第k天沒有雨時(shí),記bk=﹣11≤k≤31);記錄完畢后,小明計(jì)算出a1b1+a2b2+…+a31b3125,那么該月氣象臺(tái)預(yù)報(bào)準(zhǔn)確的的總天數(shù)為_____;若a1b1+a2b2+…+akbkm,則氣象臺(tái)預(yù)報(bào)準(zhǔn)確的天數(shù)為_____(用m,k表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“綠水青山就是金山銀山”的理念越來越深入人心,據(jù)此,某網(wǎng)站調(diào)查了人們對(duì)生態(tài)文明建設(shè)的關(guān)注情況,調(diào)查數(shù)據(jù)表明,參與調(diào)查的人員中關(guān)注生態(tài)文明建設(shè)的約占80%.現(xiàn)從參與調(diào)查的關(guān)注生態(tài)文明建設(shè)的人員中隨機(jī)選出200人,并將這200人按年齡(單位:歲)分組:第1[15,25),第2[25,35),第3[35,45),第4[45,55),第5[55,65],得到的頻率分布直方圖如圖所示.

(Ⅰ)求這200人的平均年齡(每一組用該組區(qū)間的中點(diǎn)值作為代表)和年齡的中位數(shù)(保留一位小數(shù));

(Ⅱ)現(xiàn)在要從年齡在第1,2組的人員中用分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,求抽取的3人中恰有2人的年齡在第2組中的概率;

(Ⅲ)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,設(shè)這3人中關(guān)注生態(tài)文明建設(shè)的人數(shù)為X,求隨機(jī)變量X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù).

1)當(dāng)時(shí),求曲線處的切線方程:

2)當(dāng)>0時(shí),求函數(shù)的單調(diào)區(qū)間和極值;

3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù),數(shù)列的前項(xiàng)和為, , ;

(1)求數(shù)列的通項(xiàng)公式;

(2)若,且是單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍;

(3)若, ,對(duì)于任意給定的正整數(shù),是否存在正整數(shù)、,使得?若存在,求出、的值(只要寫出一組即可);若不存在,請(qǐng)說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),若關(guān)于的方程有唯一實(shí)數(shù)解,試求實(shí)數(shù)的取值范圍;

(3)若函數(shù)有兩個(gè)極值點(diǎn),,且不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案