【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),若關(guān)于的方程有唯一實(shí)數(shù)解,試求實(shí)數(shù)的取值范圍;
(3)若函數(shù)有兩個(gè)極值點(diǎn),,且不等式恒成立,試求實(shí)數(shù)的取值范圍.
【答案】(1);(2)或;(3).
【解析】
(1)對函數(shù)求導(dǎo),求出的值可得切點(diǎn)坐標(biāo),求出的值,可得切線斜率,利用點(diǎn)斜式可得在點(diǎn)的切線方程;(2)原方程等價(jià)于,對求導(dǎo)得到函數(shù)單調(diào)區(qū)間,可知當(dāng)時(shí),;當(dāng)時(shí),,結(jié)合單調(diào)性可得到實(shí)數(shù)的取值范圍;(3)對函數(shù)求導(dǎo),可得,恒成立恒成立,將用替換,并構(gòu)造函數(shù),對求導(dǎo)可求得函數(shù)在上的最小值,即可知道實(shí)數(shù)的取值范圍.
(1)當(dāng)時(shí),有,
,
,
過點(diǎn)的切線方程為,即.
(2)當(dāng)時(shí),有,其定義域?yàn)?/span>,
從而方程,可化為,令,
則,
由或,
在和上單調(diào)遞增,在上單調(diào)遞減,
且,
又當(dāng)時(shí),;當(dāng)時(shí),,
關(guān)于的方程有唯一實(shí)數(shù)解,所以實(shí)數(shù)的取值范圍是或.
(3)的定義域?yàn)?/span>,
令,
又因?yàn)楹瘮?shù)有兩個(gè)極值點(diǎn),
有兩個(gè)不等實(shí)數(shù)根,
,且,
從而,
由不等式恒成立恒成立,
,
令,,
當(dāng)時(shí)恒成立,所以函數(shù)在上單調(diào)遞減,,故實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中、是非空數(shù)集,且,設(shè),;
(1)若,,求;
(2)是否存在實(shí)數(shù),使得,且?若存在,請求出滿足條件的實(shí)數(shù);若不存在,請說明理由;
(3)若,且,,是單調(diào)遞增函數(shù),求集合、;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司利用簡單隨機(jī)抽樣方法,對投保車輛進(jìn)行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計(jì)如下:
賠付金額(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
車輛數(shù)(輛) | 500 | 130 | 100 | 150 | 120 |
(1)若每輛車的投保金額均為2800元,估計(jì)賠付金額大于投保金額的概率.
(2)在樣本車輛中,車主是新司機(jī)的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機(jī)的占20%,估計(jì)在已投保車輛中,新司機(jī)獲賠金額為4000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若a=1,求f(x)的極值;
(2)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,為常數(shù))在內(nèi)有兩極值點(diǎn)
(1)求實(shí)數(shù)a的取值范圍;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家大約在公元222年趙爽為《周碑算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的)類比“趙爽弦圖”,趙爽弦圖可類似地構(gòu)造如圖所示的圖形,它是由個(gè)3全等的等邊三角形與中間的一個(gè)小等邊三角形組成的一個(gè)大等邊三角形,設(shè)DF2AF,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com