【題目】執(zhí)行如圖所示的程序框圖,若輸出的i的值為8,則判斷框內(nèi)實(shí)數(shù)a的取值范圍是 . (寫(xiě)成區(qū)間或集合的形式)

【答案】[﹣4,6)
【解析】解:由循環(huán)變量的初值為0,步長(zhǎng)為1,
最后一次進(jìn)入循環(huán)的終值為8,
第1次循環(huán):t=76﹣10=66 i=0+1=1
第2次循環(huán):t=66﹣10=56 i=1+1=2
第3次循環(huán):t=56﹣10=46 i=2+1=3
第4次循環(huán):t=46﹣10=36 i=3+1=4

第7次循環(huán):t=16﹣10=6 i=6+1=7
第8次循環(huán):t=6﹣10=﹣4 i=7+1=8
退出循環(huán).此時(shí)t=﹣4≤a,不滿(mǎn)足循環(huán)條件,輸出i=8
則判斷框內(nèi)a的取值范圍是﹣4≤a<6.
所以答案是:[﹣4,6).
【考點(diǎn)精析】利用程序框圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知程序框圖又稱(chēng)流程圖,是一種用規(guī)定的圖形、指向線(xiàn)及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線(xiàn);程序框外必要文字說(shuō)明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4名學(xué)生參加演講比賽,有兩個(gè)題目可供選擇,組委會(huì)決定讓選手通過(guò)擲一枚質(zhì)地均勻的骰子選擇演講的題目,規(guī)則如下:選手?jǐn)S出能被3整除的數(shù)則選擇題目,擲出其他的數(shù)則選擇題目.

(1)求這4個(gè)人中恰好有1個(gè)人選擇題目的概率;

(2)用分別表示這4個(gè)人中選擇題目的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線(xiàn)l與圓C:(x﹣2)2+(y﹣3)2=1交于點(diǎn)M、N兩點(diǎn).
(1)求k的取值范圍;
(2)若 =12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)在一次對(duì)收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如表所示:

(Ⅰ)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機(jī)抽取5名,大于40歲的觀眾應(yīng)該抽取幾名?
(Ⅱ)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為20至40歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果若干個(gè)函數(shù)的圖象經(jīng)過(guò)平移后能夠重合,則稱(chēng)這些函數(shù)“互為生成”函數(shù),給出下列函數(shù):
①f(x)=sinx﹣cosx,
②f(x)= (sinx+cosx),
③f(x)= sinx+2,
④f(x)=sinx,其中互為生成的函數(shù)是(
A.①②
B.①③
C.③④
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α,β∈( ,π),且sinα+cosα=a,cos(β﹣α)=
(1)若a= ,求sinαcosα+tanα﹣ 的值;
(2)若a= ,求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的首項(xiàng)為a,公差為b,且不等式ax2﹣3x+2>0的解集為(﹣∞,1)∪(b,+∞)
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)數(shù)列{bn}滿(mǎn)足= ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)x﹣9y﹣8=0與曲線(xiàn)C:y=x3﹣px2+3x相交于A,B,且曲線(xiàn)C在A,B處的切線(xiàn)平行,則實(shí)數(shù)p的值為(
A.4
B.4或﹣3
C.﹣3或﹣1
D.﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】10.已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)( ,an+1)(n∈N*)在函數(shù)y=x2+1的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)若數(shù)列{bn}滿(mǎn)足b1=1,bn+1=bn+ ,求證:bn·bn+2< .

查看答案和解析>>

同步練習(xí)冊(cè)答案