18.為了得到函數(shù)y=sin3x+cos3x的圖象,可將函數(shù)y=$\sqrt{2}$sin3x的圖象(  )
A.左平移$\frac{π}{4}$ 個(gè)單位B.向右平移$\frac{π}{4}$ 個(gè)單位
C.向右平移$\frac{π}{12}$ 個(gè)單位D.向左平移$\frac{π}{12}$ 個(gè)單位

分析 化簡函數(shù)y=sin3x+cos3x=$\sqrt{2}$sin3(x+$\frac{π}{12}$),根據(jù)三角函數(shù)的圖象平移法則,即可得出結(jié)論.

解答 解:函數(shù)y=sin3x+cos3x=$\sqrt{2}$sin(3x+$\frac{π}{4}$)=$\sqrt{2}$sin3(x+$\frac{π}{12}$),
應(yīng)將函數(shù)y=$\sqrt{2}$sin3x的圖象向左平移$\frac{π}{12}$ 個(gè)單位即可.
故選:D.

點(diǎn)評 本題考查了三角函數(shù)的化簡與圖象平移法則的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知{an}是由正數(shù)組成的等比數(shù)列,a2=2,且a4,3a3,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an+1-λan}的前n項(xiàng)和為Sn,若Sn=2n-1(n∈N*),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.2$\sqrt{2}$-$\sqrt{7}$<$\sqrt{6}$-$\sqrt{5}$.(請?jiān)跈M線上填“<”,”>”或“=”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合M={x|y=$\sqrt{x}$},N={y|y=x2},則下列說法正確的是(  )
A.M=(0,+∞)B.M=NC.M∩N={0,1}D.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法中正確的是( 。
A.“若x2=1,則x=1或x=-1”的否命題為“若x2≠1,則x≠1或x≠-1”
B.已知命題“p∧q”為假命題,則命題“p∨q”也是假命題
C.設(shè)U為全集,集合A,B滿足(∁UA)∩B=(∁UB)∩A,則必有A=B=∅
D.設(shè)λ為實(shí)數(shù),“?x∈[-1,1],滿足$\sqrt{1-{x}^{2}}$≤λ”的充分不必要條件為“λ≥1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)設(shè)x≥1,y≥1,證明x+y+$\frac{1}{xy}$≤$\frac{1}{x}$+$\frac{1}{y}$+xy;
(2)設(shè)1<a≤b≤c,證明logab+logbc+logca≤logba+logcb+logac.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=sin(x+$\frac{π}{6}$)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到圖象C1,再把圖象C1向右平移$\frac{π}{6}$個(gè)單位,得到圖象C2,則圖象C2對應(yīng)的函數(shù)表達(dá)式為(  )
A.y=sin2xB.y=sin($\frac{1}{2}$x+$\frac{π}{4}$)C.y=sin$\frac{1}{2}$xD.y=sin($\frac{1}{2}$x+$\frac{π}{12}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.△ABC中,角A、B、C所對的邊分別為a、b、c,角A為銳角,且$\frac{sin2A}{tanA}=\frac{{2{b^2}}}{c^2}$.
(1)求角C的大;
(2)求sinA+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.經(jīng)過點(diǎn)(2,0)且斜率為3的直線方程是(  )
A.3x-y+6=0B.3x+y-6=0C.3x-y-6=0D.3x+y+6=0

查看答案和解析>>

同步練習(xí)冊答案