9.如圖所示的程序框圖,它的輸出結(jié)果是( 。
A.-1B.0C.1D.16

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計算變量y的值并輸出,模擬程序的運行從而得解.

解答 解:模擬執(zhí)行程序,可得
k=0,x=0
滿足條件k≤15,執(zhí)行循環(huán)體,y=0,x=$\frac{π}{2}$,k=1
滿足條件k≤15,執(zhí)行循環(huán)體,y=1,x=π,k=2
滿足條件k≤15,執(zhí)行循環(huán)體,y=0,x=$\frac{3π}{2}$,k=3
滿足條件k≤15,執(zhí)行循環(huán)體,y=-1,x=2π,k=4
滿足條件k≤15,執(zhí)行循環(huán)體,y=0,x=$\frac{5π}{2}$,k=5
滿足條件k≤15,執(zhí)行循環(huán)體,y=1,x=3π,k=6

觀察規(guī)律可知,y的取值周期為4,由于,15=4×3+3,可得
滿足條件k≤15,執(zhí)行循環(huán)體,y=-1,x=8π,k=16
此時,不滿足條件k≤15,退出循環(huán),輸出y的值為-1.
故選:A.

點評 本題考查根據(jù)流程圖(或偽代碼)寫程序的運行結(jié)果,是算法這一模塊最重要的題型,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在區(qū)間[-2,2]內(nèi)任取一個整數(shù)x,在區(qū)間[0,4]內(nèi)任取一個整數(shù)y,則y≥x2的概率等于( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,其中正視圖和俯視圖都是腰長為2的等腰三角形,俯視圖是半徑為1的圓,則該幾何體的表面積是( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖所示(算法流程圖)的輸出值x=12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.關(guān)于平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,有下列三個命題:
①若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$;
②若|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|,則$\overrightarrow{a}$∥$\overrightarrow$;
③$\overrightarrow{a}$=(-1,1)在$\overrightarrow$=(3,4)方向上的投影為$\frac{1}{5}$;
④非零向量$\overrightarrow{a}$和$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為60°.
其中真命題的序號為②③(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}共有2n+1項,所有奇數(shù)項之和為132,所有偶數(shù)項之和為120,則n等于(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\frac{1}{3}$|x|3-ax2+(6-a)|x|+b(a,b∈R),若f(x)有六個不同的單調(diào)區(qū)間,則實數(shù)a的取值范圍為( 。
A.a<-2,或a>0B.0<a<1C.1<a<3D.2<a<6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.甲射擊命中目標的概率是$\frac{1}{4}$,乙命中目標的概率是$\frac{1}{3}$,丙命中目標的概率是$\frac{1}{2}$,現(xiàn)在三人同時射擊目標,則目標被擊中的概率為( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{4}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD為直角梯形,其中AB∥CD,AB⊥AD,AB=AC=2CD=4,AA1=3,過AC的平面分別與A1B1,B1C1交于E1,F(xiàn)1,且E1為A1B1的中點.
(Ⅰ) 求證:平面ACF1E1∥平面A1C1D;
(Ⅱ) 求二面角A1-AC-E1的大。

查看答案和解析>>

同步練習(xí)冊答案