【題目】已知一次函數(shù)是上的減函數(shù),,且 f [ f(x)]=16x-3.
(1)求;
(2)若在(-2,3)單調(diào)遞增,求實數(shù)的取值范圍;
(3)當(dāng)時,有最大值1,求實數(shù)的值.
【答案】(1) ; (2); (3).
【解析】
⑴設(shè),結(jié)合題意運用待定系數(shù)法求出表達式
⑵表示出的解析式,結(jié)合單調(diào)性求出的取值范圍
⑶討論對稱軸與區(qū)間的位置關(guān)系,求出實數(shù)的值
(1)∵是上的增函數(shù),設(shè)f(x)=ax+b(a<0)
故f[f(x)]=a(ax+b)+b=a2x+ab+b=16x-3,
∴a=16,ab+b=-5,解得
由于a<0,得a=-4,b=1 ,∴f(x)=-4x+1.
(2)=(-4x+1)(x+m)=-4x2+(1-4m)x+m
對稱軸,根據(jù)題意可得 3, 解得,
∴的取值范圍為。
(3)①當(dāng) 即時,,解得m=,符合題意;
②當(dāng)>1時,即時,=1,解得m=,
不符合題意;
由①②可得m=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關(guān)系,下表記錄了小李某月1號到5號每天打籃球時間x單位:小時)與當(dāng)天投籃命中率y之間的關(guān)系:
時間x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)求小李這5天的平均投籃命中率;
(2)用線性回歸分析的方法,預(yù)測小李該月6號打6小時籃球的投籃命中率. .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點到焦點的距離為5.
(1)求拋物線C的方程;
(2)設(shè)直線y=kx+b與拋物線C交于A(x1 , y1),B(x2 , y2),且|y1﹣y2|=2,過弦AB中點M作平行于x軸的直線交拋物線于點D,求△ABD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若三個數(shù)a,1,c成等差數(shù)列(其中a≠c),且a2 , 1,c2成等比數(shù)列,則 的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.
(1)求橢圓的標(biāo)準方程;
(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x),如果對任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,則稱f(x)為k階縮放函數(shù).
(1)已知函數(shù)f(x)為二階縮放函數(shù),且當(dāng)x∈(1,2]時,f(x)=1+ x,求f(2 )的值;
(2)已知函數(shù)f(x)為二階縮放函數(shù),且當(dāng)x∈(1,2]時,f(x)= ,求證:函數(shù)y=f(x)﹣x在(1,+∞)上無零點;
(3)已知函數(shù)f(x)為k階縮放函數(shù),且當(dāng)x∈(1,k]時,f(x)的取值范圍是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的一個焦點,過原點的直線與橢圓交于兩點,且, 的面積為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若,過點且不與坐標(biāo)軸垂直的直線交橢圓于兩點,線段的垂直平分線與軸交于點,求點橫坐標(biāo)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com