分析 (1)連接DE,則∠DEC=90°,證明C,E,D,B四點共圓,利用切割線定理證明AE•AC=AD•AB;
(2)若BD=1,BC=$\sqrt{3}$,求出CF,即可求點F到線段AC的距離.
解答 證明:(1)連接DE,則∠DEC=90°,
∵∠B=90°,
∴C,E,D,B四點共圓,
∴AE•AC=AD•AB;
解:(2)若BD=1,BC=$\sqrt{3}$,
則∠DCB=30°,∠ACB=60°,
∴AC=2$\sqrt{3}$,CE=$\sqrt{3}$,CD=2,
∵CE•CA=CD•CF,
∴CF=3,
∴點F到線段AC的距離為$\frac{3}{2}$.
點評 本題主要考查與圓有關(guān)的比例線段和切割線定理,證明乘積式的問題,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3+$\sqrt{2}$ | B. | 2+$\sqrt{3}$ | C. | 2+$\sqrt{2}$ | D. | 3+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-∞,}\right.-\sqrt{2})∪(\sqrt{2},+∞)$ | B. | (-3$\sqrt{2}$,-$\sqrt{2}$)∪($\sqrt{2}$,3$\sqrt{2}$) | C. | $(-3\sqrt{2},3\sqrt{2})$ | D. | $(-\sqrt{2},\sqrt{2})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com