17.已知函數(shù)f(x)=x2-2elnx.(e為自然對數(shù)的底數(shù))
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的圖象在(1,f(1))處的切線方程.

分析 (1)求出f(x)的導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間;
(2)求出函數(shù)的導(dǎo)數(shù),可得切線的斜率和切點,由點斜式方程即可得到切線的方程.

解答 解:(1)函數(shù)f(x)的定義域為(0,+∞).
f(x)的導(dǎo)數(shù)為$f'(x)=2x-\frac{2e}{x}$=$\frac{{2({x-\sqrt{e}})({x+\sqrt{e}})}}{x}$,
由0<x<$\sqrt{e}$可得f′(x)<0;由x>$\sqrt{e}$可得f′(x)>0.
∴f(x)的單調(diào)遞減區(qū)間是$({0,\sqrt{e}})$,單調(diào)遞增區(qū)間是$({\sqrt{e},+∞})$.
(2)∵f(1)=1,f′(1)=2-2e.
∴切線為y-1=(2-2e)(x-1)
即切線方程為(2e-2)x+y+1-2e=0.

點評 本題考查導(dǎo)數(shù)的運用:求切線的方程和單調(diào)區(qū)間,考查導(dǎo)數(shù)的幾何意義,考查方程思想的運用,以及運算求解能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.用輾轉(zhuǎn)相除法求242與154的最大公約為22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知(tanα-3)(sinα+cosα+3)=0,求值:
(1)$\frac{4sinα+2cosα}{5cosα+3sinα}$
(2)$2+\frac{2}{3}{sin^2}α+\frac{1}{4}{cos^2}α$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若p是真命題,q是假命題,則(  )
A.p且q是真命題B.p或q是假命題C.非p是真命題D.非q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$0<α<π,sinα•cosα=-\frac{1}{2}$,則$\frac{1}{1+sinα}+\frac{1}{1+cosα}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.f(x)=$\frac{1}{3}{x^3}$-$\frac{1}{2}$(a-3)x2-a(2a-3)x+b在(-1,1)上不單調(diào),則實數(shù)a的取值范圍是(-1,1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題正確的是(  )
A.若命題p:?x0∈R,x02-x0+1<0,則¬p:?x∉R,x2-x+1≥0
B.命題“若x=y,則cosx=cosy”的逆否命題為真命題
C.已知隨機(jī)變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4-a)=0.68
D.已知相關(guān)變量(x,y)滿足線性回歸方程:$\stackrel{∧}{y}$=2-3x,若變量x增加一個單位,則y平均增加3個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)變量x,y滿足條件$\left\{\begin{array}{l}2x+y-2≥0\\ x-2y+4≥0\\ x-1≤0\end{array}\right.$,則目標(biāo)函數(shù)z=x-y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋擲一枚質(zhì)地均勻的骰子兩次,記A={兩次的點數(shù)均為偶數(shù)},B={兩次的點數(shù)之和為8},則P(B|A)=( 。
A.$\frac{1}{12}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案