10.已知a1=2,an+1=$\frac{n+1}{n}{a_n}$,則a2016=( 。
A.504B.1008C.2016D.4032

分析 a1=2,an+1=$\frac{n+1}{n}{a_n}$,可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$(n≥2).利用“累乘求積”方法即可得出.

解答 解:∵a1=2,an+1=$\frac{n+1}{n}{a_n}$,∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$(n≥2).
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$$•\frac{{a}_{n-1}}{{a}_{n-2}}$•…$•\frac{{a}_{3}}{{a}_{2}}$$•\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n}{n-1}$•$\frac{n-1}{n-2}$•…•$\frac{3}{2}×\frac{2}{1}$×2=2n.
則a2016=2×2016=4032.
故選:D.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、“累乘求積”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若b=1,a=2c,則當(dāng)C取最大值時(shí),△ABC的面積為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.一個(gè)袋中有大小相同的標(biāo)有1,2,3,4,5,6的6個(gè)小球,某人做如下游戲,每次從袋中拿一個(gè)球(拿后放回),記下標(biāo)號(hào),若拿出球的標(biāo)號(hào)是3的倍數(shù),則得1分,否則得0分.
(1)求拿4次恰好得2分的概率;
(2)求拿4次所得分?jǐn)?shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.等比數(shù)列{an}各項(xiàng)為正數(shù),a10a11=e5,則lna1+lna2+…+lna20=50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在等比數(shù)列{an}中,a5=-9,a8=6,則a11=(  )
A.-4B.±4C.-2D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在等比數(shù)列{an}中,a1+a2=6,a2+a3=12,Sn為數(shù)列{an}的前n項(xiàng)和,則log2(S2016+2)=2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,a,b,c分別為A,B,C所對(duì)邊,a+b=4,(2-cosA)tan$\frac{C}{2}$=sinA.
(1)求邊長(zhǎng)c的值;
(2)若E為AB的中點(diǎn),求線段EC的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}是等差數(shù)列,且滿足:a1+a2+a3=6,a5=5.
(Ⅰ)求an
(Ⅱ)記數(shù)列cn=$\frac{2}{{{a_{n+1}}{a_{n+2}}}}$(n∈N*),若{cn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在銳角△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a:c=2:3,sinA=$\frac{\sqrt{7}}{4}$.
(1)求sinC,cosB的值;
(2)若$\overrightarrow{AB}$$•\overrightarrow{BC}$=-$\frac{27}{2}$,求邊AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案