10.某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤50元;未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示,該同學(xué)為這個(gè)開學(xué)季購進(jìn)了160盒該產(chǎn)品,以x(單位:盒,100≤x≤200)表示這個(gè)開學(xué)季內(nèi)的市場需求量,(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場需求量x的中位數(shù);
(2)將y表示為x的函數(shù);
(3)根據(jù)直方圖估計(jì)利潤不少于4800元的概率.

分析 (1)由頻率直方圖求出需求量為[100,120)的頻率,需求量為[120,140)的頻率和需求量為[140,160)的頻率,由此能求出中位數(shù).
(2)當(dāng)100≤x≤160時(shí),y=50x-30×(160-x)=80x-4800,當(dāng)160<x≤200 時(shí),y=160×50=8000,由此能將將y表示為x的函數(shù).
(3)由80x-4800≥4800,能求出利潤不少于4800元的概率.

解答 解:(1)由頻率直方圖得:需求量為[100,120)的頻率為0.05×20=0.1,
需求量為[120,140)的頻率為0.01×20=0.2,
需求量為[140,160)的頻率為0.015×20=0.3,
則中位數(shù)x=140+$\frac{2}{3}×20=\frac{460}{3}$.
(2)∵每售出1盒該產(chǎn)品獲利潤50元,未售出的產(chǎn)品,每盒虧損30元,
∴當(dāng)100≤x≤160時(shí),y=50x-30×(160-x)=80x-4800,
當(dāng)160<x≤200 時(shí),y=160×50=8000,
∴y=$\left\{\begin{array}{l}{80x-4800,100≤x≤160}\\{8000,160<x≤200}\end{array}\right.$.
(3)∵利潤不少于4800 元,
∴80x-4800≥4800,解得x≥120,
∴由(1)知利潤不少于4800元的概率p=1-0.1=0.9.

點(diǎn)評(píng) 本題考查中位數(shù)的求法,考查函數(shù)的解析式的求法,考查概率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意頻率分布直方圖的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某校從高二年級(jí)學(xué)生中隨機(jī)抽取60名學(xué)生,將其期中考試的政治成績(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如下頻率分布直方圖.
(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率;
(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)該校高二年級(jí)學(xué)生期中考試政治成績的平均分、眾數(shù)、中位數(shù);(小數(shù)點(diǎn)后保留一位有效數(shù)字)
(Ⅲ)用分層抽樣的方法在各分?jǐn)?shù)段的學(xué)生中抽取一個(gè)容量為20的樣本,則各分?jǐn)?shù)段抽取的人數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=4${\;}^{(co{s^2}x)}}$+4${\;}^{(si{n^2}x)}}$,則f(x)的最小值等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.f(x)的定義域?yàn)閇-2,3],則f(2x+1)的定義域?yàn)閇-$\frac{3}{2}$,1](用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow a$=(1,m),$\overrightarrow b$=(m,2),若$\overrightarrow a$⊥$\overrightarrow b$,則m=0;若$\overrightarrow a$∥$\overrightarrow b$,則m=$±\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知命題:p:?x∈R,3x>0;命題:q:?x∈R,log${\;}_{\frac{1}{2}}}$x02<0.以下命題為真命題的是(  )
A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{n^2}{2}$+$\frac{3n}{2}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=an+2-an+$\frac{1}{{{a_{n+2}}•{a_n}}}$,且數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<2n+$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知△ABC中,B=30°,AC=1,AB=$\sqrt{3}$,則邊長BC為1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)=3-2|x|,g(x)=x2-2x,F(xiàn)(x)=$\left\{\begin{array}{l}{g(x),若f(x)≥g(x)}\\{f(x),若f(x)<g(x)}\end{array}\right.$,則F(x)的最值是( 。
A.最大值為3,最小值為-1B.最大值為3,無最小值
C.最大值為7-2$\sqrt{7}$,無最小值D.既無最大值,又無最小值

查看答案和解析>>

同步練習(xí)冊答案