13.已知數(shù)列{an}的前n項和為Sn,且Sn=n-5an+23,n∈N*,則數(shù)列{an}的通項公式an=( 。
A.$3×{(\frac{5}{6})^{n-1}}-1$B.$3×{(\frac{5}{6})^n}-1$C.$3×{(\frac{5}{6})^{n-1}}+1$D.$3×{(\frac{5}{6})^n}+1$

分析 Sn=n-5an+23,n∈N*,當n=1時,a1=S1=1-5a1+23,解得a1.n≥2時,an=Sn-Sn-1,化為an-1=$\frac{5}{6}$(an-1-1),再利用等比數(shù)列的通項公式即可得出.

解答 解:∵Sn=n-5an+23,n∈N*,
∴當n=1時,a1=S1=1-5a1+23,解得a1=4.
n≥2時,an=Sn-Sn-1=n-5an+23-(n-1-5an-1+23),化為:an-1=$\frac{5}{6}$(an-1-1),a1-1=3.
∴數(shù)列{an-1}是等比數(shù)列,首項為3,公比為$\frac{5}{6}$.
∴an-1=$3×(\frac{5}{6})^{n-1}$,即an=$3×(\frac{5}{6})^{n-1}$+1,
故選:C.

點評 本題考查了數(shù)列遞推關系、等比數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A-EF-C是二面角,求直線AE與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某校高三年級準備舉行一次座談會,其中三個班被邀請的學生數(shù)如表所示:
 班級 高三(1) 高三(2) 高三(3)
 人數(shù) 3 3 4
(Ⅰ)若從這10名學生中隨機選出2名學生發(fā)言,求這2名學生不屬于同一班級的概率;
(Ⅱ)若從這10名學生中隨機選出3名學生發(fā)言,設X為來自高三(1)班的學生人數(shù),求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.以40km/h向北偏東30°航行的科學探測船上釋放了一個探測氣球,氣球順風向正東飄去,3min后氣球上升到1km處,從探測船上觀察氣球,仰角為30°,求氣球的水平飄移速度是20km/h.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知5件產品中有2件次品,現(xiàn)逐一檢測,直至能確定所有次品為止,記檢測的次數(shù)為ξ,則Eξ=( 。
A.3B.$\frac{7}{2}$C.$\frac{18}{5}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.連續(xù)擲兩次骰子,以先后得到的點數(shù)m,n為點P的坐標(m,n),那么點P在圓x2+y2=17內部(不包括邊界)的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{5}{18}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.$\frac{sin10°}{1-\sqrt{3}tan10°}$=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知a,b,c分別是△ABC的內角A,B,C所對的邊,a=2bcosB,b≠c.
(1)證明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知等差數(shù)列{an}的公差d不為0,且a7,a3,a1是等比數(shù)列{bn}從前到后的連續(xù)三項.
(1)若a1=4,求等差數(shù)列{an}的前10項的和S10;
(2)若等比數(shù)列{bn}的前100項的和T100=150,求b2+b4+b6+…+b100的值.

查看答案和解析>>

同步練習冊答案