20.設(shè)非負(fù)實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}{y≥x-1}\\{2x+y≤5}\end{array}\right.$,(2,1)是目標(biāo)函數(shù)z=ax+3y(a>0)取最大值的最優(yōu)解,則a的取值范圍是( 。
A.(0,6)B.(0,6]C.[6,+∞)D.(6,+∞)

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義結(jié)合數(shù)形結(jié)合進(jìn)行判斷即可.

解答 解:作出可行域如圖所示,將z=ax+3y化成y=-$\frac{a}{3}$x+$\frac{z}{3}$,
∵a>0,
∴斜率k=-$\frac{a}{3}$<0,
要使(2,1)是目標(biāo)函數(shù)z=ax+3y(a>0)取最大值的最優(yōu)解,
則滿足-$\frac{a}{3}$≤-2時(shí),即目標(biāo)函數(shù)z=ax+3y僅在點(diǎn)A(2,1)處取得最大值,
解得a≥6.
故選:C

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{1+{x}^{2}}$
(1)求f(1)+f(2)+f(3)+f($\frac{1}{2}$)+f($\frac{1}{3}$)的值;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.向平面區(qū)域{(x,y)||x|≤1,|y|≤1}內(nèi)隨機(jī)投入一點(diǎn),則該點(diǎn)落在區(qū)域{(x,y)|x2+y2≤1}內(nèi)的概率等于$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足sn=$\frac{n}{2}({{a_{n+1}}+1})$且a1=3,令bn=$\frac{a_n}{n}$
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,數(shù)列{cn}的前n項(xiàng)和為Tn,若Tn≤M對(duì)?n∈N都成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知底面是菱形的直棱柱,底面的對(duì)角線的長(zhǎng)分別為6和8,棱柱的高為15,則這個(gè)棱柱的側(cè)面積為( 。
A.75B.250C.150D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在雙曲線$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{9}$=1上有一點(diǎn)P,F(xiàn)1,F(xiàn)2為兩焦點(diǎn).
(1)若PF1⊥PF2,求△F1PF2的面積及P的坐標(biāo);
(2)若∠F1PF2=60°,求△F1PF2的面積及P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知O為△ABC的外心,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=4,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且x+4y=2,則|$\overrightarrow{OA}$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|,0<x≤3}\\{-x+4,x>3}\end{array}\right.$,若a<b<c且f(a)=f(b)=f(c),則(ab+2)c的取值范圍是(27,81).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知lgx+|lgy|+2001=0,且|lgx|•lgy+2002=0,求logyx的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案