【題目】已知函數(shù)f(x)=|x﹣1|+|2x﹣6|(x∈R),記f(x)的最小值為c.
(1)求c的值;
(2)若實數(shù)ab滿足a>0,b>0,a+b=c,求的最小值.
【答案】(1)2;(2)1.
【解析】
(1)根據(jù)絕對值的幾何意義,將問題理解為數(shù)軸上點到1,3,3距離的最小值即可求得;
(2)根據(jù)(1)中所求結(jié)果,配湊出使用均值不等式的條件,利用均值不等式即可求得.
(1)f(x)=|x﹣1|+|2x﹣6=|x﹣1|+|x﹣3|+|x﹣3|,
f(x)表示數(shù)軸上的點到數(shù)軸上1,3,3對應(yīng)點的距離之和.
∴f(x)min=f(3)=2,
∴c=2.
(2)∵a+b=2,
∴[(a+1)+(b+1)]()
[a2+b2](a2+b2+2ab)(a+b)2=1;
當(dāng)且僅當(dāng),即時,有最小值1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=BC=CD=1,AD=2,點E、F分別在線段AB、AD上,且EF∥CD,將△AEF沿EF折起到△MEF的位置,并使平面MEF⊥平面BCDFE,得到幾何體M﹣BCDEF,則折疊后的幾何體的體積的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系中,直線的參數(shù)方程為,(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出直線的極坐標方程與曲線的直角坐標方程;
(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行六面體ABCD﹣A1B1C1D1中,所有棱長均為2,∠AA1D1=∠AA1B1=60°,∠D1A1B1=90°.
(1)求證:A1C⊥B1D1;
(2)求對角線AC1的長;
(3)求二面角C1﹣AB1﹣D1的平面角的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=lnx+ax2+(2a+1)x.
(1)討論的單調(diào)性;
(2)當(dāng)a﹤0時,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會》是央視首檔全民參與的詩詞節(jié)目,節(jié)目以“賞中華詩詞,尋文化基因,品生活之美”為宗旨.每一期的比賽包含以下環(huán)節(jié):“個人追逐賽”、“攻擂資格爭奪賽”和“擂主爭霸賽”,其中“擂主爭霸賽”由“攻擂資格爭奪賽”獲勝者與上一場擂主進行比拼.“擂主爭霸賽”共有九道搶答題,搶到并答對者得一分,答錯則對方得一分,率先獲得五分者即為該場擂主.在《中國詩詞大會》的某一期節(jié)目中,若進行“擂主爭霸賽”的甲乙兩位選手每道搶答題得到一分的概率都是為0.5,則搶答完七道題后甲成為擂主的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式恒成立,求的取值范圍;
(2)當(dāng)時,求證:;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
是否需要志愿 性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否有99%的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)老年人中,需要志愿幫助的老年人的比例?說明理由.
P | 0.0 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com