【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.

【答案】(1)直線的極坐標(biāo)方程為曲線的直角坐標(biāo)方程為.(2).

【解析】試題分析:(1)先利用加減消元法將直線的參數(shù)方程化為直角坐標(biāo)方程,再利用,得直線的極坐標(biāo)方程,最后根據(jù),將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,(2)先根據(jù)點斜式寫出直線方程,與拋物線方程聯(lián)立,利用韋達(dá)定理以及弦長公式求.

試題解析:(1)將,代入直線方程得

可得,

曲線的直角坐標(biāo)方程為.

(2)直線的傾斜角為,∴直線的傾斜角也為,又直線過點,

∴直線的參數(shù)方程為為參數(shù)),將其代入曲線的直角坐標(biāo)方程可得

,設(shè)點對應(yīng)的參數(shù)分別為.

由一元二次方程的根與系數(shù)的關(guān)系知,,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】揚州大學(xué)數(shù)學(xué)系有6名大學(xué)生要去甲、乙兩所中學(xué)實習(xí),每名大學(xué)生都被隨機分配到兩所中學(xué)的其中一所.

(1)求6名大學(xué)生中至少有1名被分配到甲學(xué)校實習(xí)的概率;

(2)設(shè),分別表示分配到甲、乙兩所中學(xué)的大學(xué)生人數(shù),記,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù). 若曲線y=在點P(e,f(e))處的切線方程為y=2x-e(為自然對數(shù)的底數(shù)).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試比較的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運而生.某市場研究人員為了了解共享單車運營公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,并繪制了相應(yīng)的拆線圖.

(1)由拆線圖可以看出,可用線性回歸模型擬合月度市場占有率與月份代碼之間的關(guān)系.求關(guān)于的線性回歸方程,并預(yù)測公司2017年4月份(即時)的市場占有率;

(2)為進一步擴大市場,公司擬再采購一批單車.現(xiàn)有采購成本分別為1000元/輛和1200元/輛的兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導(dǎo)致車輛報廢年限各不相同.考慮到公司運營的經(jīng)濟效益,該公司決定先對兩款車型的單車各100輛進行科學(xué)模擬測試,得到兩款單車使用壽命頻數(shù)表如下:

車型 報廢年限

1年

2年

3年

4年

總計

20

35

35

10

100

10

30

40

20

100

經(jīng)測算,平均每輛單車每年可以帶來收入500元.不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整年,且以頻率作為每輛單車使用壽命的概率.如果你是 公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款車型?

(參考公式:回歸直線方程為,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地一商場記錄了月份某天當(dāng)中某商品的銷售量(單位:)與該地當(dāng)日最高氣溫(單位:)的相關(guān)數(shù)據(jù),如下表:

(1)試求的回歸方程

(2)判斷之間是正相關(guān)還是負(fù)相關(guān);若該地月某日的最高氣溫是,試用所求回歸方程預(yù)測這天該商品的銷售量;

(3)假定該地月份的日最高氣溫,其中近似取樣本平均數(shù),近似取樣本方差,試求.

附:參考公式和有關(guān)數(shù)據(jù),,,若,則,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓和圓的極坐標(biāo)方程;

(2)過點的直線與圓異于點的交點分別為點,與圓異于點的交點分別為點,且,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了推動數(shù)學(xué)教學(xué)方法的改革,學(xué)校將高一年級部分生源情況基本相同的學(xué)生分成甲、乙兩個班,每班各40人,甲班按原有模式教學(xué),乙班實施教學(xué)方法改革.經(jīng)過一年的教學(xué)實驗,將甲、乙兩個班學(xué)生一年來的數(shù)學(xué)成績?nèi)∑骄鶖?shù)再取整,繪制成如下莖葉圖,規(guī)定不低于85分(百分制)為優(yōu)秀,甲班同學(xué)成績的中位數(shù)為74.

(1)求的值和乙班同學(xué)成績的眾數(shù);

(2)完成表格,若有以上的把握認(rèn)為“數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)”的話,那么學(xué)校將擴大教學(xué)改革面,請問學(xué)校是否要擴大改革面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線處的切線與直線垂直,求的值;

(2)討論函數(shù)的單調(diào)性;若存在極值點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,且滿足).

(1)求數(shù)列的通項公式;

(2)是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案