在等差數(shù)列{an}中,a3=9,a9=3,則a12=( 。
A.-3B.0C.3D.6
設(shè)等差數(shù)列的公差為d,
由a3=9,a9=3,得到
a1+2d=9
a1+8d=3

解得:a1=11,d=-1,
所以等差數(shù)列的通項(xiàng)公式an=11-(n-1)=12-n,
則a12=12-12=0.
故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿(mǎn)足:,其中.
(1)求證:數(shù)列是等比數(shù)列;
(2)令,求數(shù)列的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{an}的前n項(xiàng)和Sn能取到最大值,且滿(mǎn)足:a9+3a11<0,a10•a11<0,對(duì)于以下幾個(gè)結(jié)論:
①數(shù)列{an}是遞減數(shù)列;
②數(shù)列{Sn}是遞減數(shù)列;
③數(shù)列{Sn}的最大項(xiàng)是S10
④數(shù)列{Sn}的最小的正數(shù)是S19
其中正確的結(jié)論的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=10,an+1=9Sn+10.
(1)求證:{lgan}是等差數(shù)列;
(2)設(shè)Tn是數(shù)列{
3
(lgan)(lgan+1)
}的前n項(xiàng)和,求使Tn
1
4
(m2-5m)
對(duì)所有的n∈N*都成立的最大正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若S3=9,S6=36,則S9的值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:等差數(shù)列{an}中,a3+a4=15,a2a5=54,公差d<0,求數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列{an}中,a1=4,d=2,則a3=( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=px2+qx,其中p>0,p+q>1,對(duì)于數(shù)列{an},設(shè)它的前n項(xiàng)和為Sn,且滿(mǎn)足Sn=f(n)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式,并證明an+1>an>1(n∈N*);
(2)求證:點(diǎn)M1(1,
S1
1
),M2(2,
S2
2
),M3(3,
S3
3
),…,Mn(n,
Sn
n
)
在同一直線l1上;
(3)若過(guò)點(diǎn)N1(1,a1),N2(2,a2)作直線l2,設(shè)l2與l1的夾角為θ,求tanθ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果一個(gè)等差數(shù)列{an}中,a2=3,a7=6,則它的公差是( 。
A.
3
5
B.
5
3
C.-
3
5
D.-
5
3

查看答案和解析>>

同步練習(xí)冊(cè)答案