設(shè)橢圓的離心率為,焦點在x軸上且長軸長為30.若曲線上的點到橢圓的兩個焦點的距離的差的絕對值等于10,則曲線的標(biāo)準(zhǔn)方程為(     )
A.B.C.D.
B

試題分析:橢圓的離心率為,焦點在x軸上且長軸長為30,所以所以曲線的兩個焦點為(-7,0),(7,0),并且c=7,a=5,所以,所以曲線的標(biāo)準(zhǔn)方程為.
點評:掌握橢圓及雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)是解決此問題的關(guān)鍵,本小題屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知動點到兩定點的距離和為8,且,線段的的中點為,過點的所有直線與點的軌跡相交而形成的線段中,長度為整數(shù)的有
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的長軸長為10,離心率,則橢圓的方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)設(shè)雙曲線的兩個焦點分別為,離心率為2.
(Ⅰ)求此雙曲線的漸近線的方程;
(Ⅱ)若、分別為上的點,且,求線段的中點的軌跡方程,并說明軌跡是什么曲線;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的中心在原點,焦點在軸上,長軸長為4,短軸長為2,則橢圓方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的兩焦點為,點滿足,則的取值范圍為      ,直線與橢圓的公共點個數(shù)為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本題滿分14分)
已知橢圓=1(a>b>0)的左右頂點為,上下頂點為, 左右焦點為,若為等腰直角三角形(1)求橢圓的離心率(2)若的面積為6,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點p(x, y)在橢圓上,則的最大值為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的兩個焦點為,且,弦AB過點,則△的周長為                                       (   )
A.10B.20 C.2D.

查看答案和解析>>

同步練習(xí)冊答案