6.函數(shù)f(x)=$\sqrt{3x-xlgx}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1000,+∞)B.(0,1000]C.(0,$\frac{1}{1000}$]D.(-∞,1000]

分析 由根式內(nèi)部的代數(shù)式大于等于0,然后轉(zhuǎn)化為不等式組求解.

解答 解:由3x-xlgx≥0,得$\left\{\begin{array}{l}{x>0}\\{3-lgx≥0}\end{array}\right.$,
解得:0<x≤1000.
∴函數(shù)f(x)=$\sqrt{3x-xlgx}$的定義域?yàn)椋?,1000].
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.對(duì)于非零向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,下列命題正確的是( 。
A.若${λ_1}\overrightarrow a+{λ_2}\overrightarrow b=\overrightarrow 0({λ_1},{λ_2}∈R)$,則λ12=0
B.若$\overrightarrow a∥\overrightarrow b$,則$\overrightarrow a$在$\overrightarrow b$上的投影為$|\overrightarrow a|$
C.若$\overrightarrow a⊥\overrightarrow b$,則$\overrightarrow a•$$\overrightarrow b={(\overrightarrow a•\overrightarrow b)^2}$
D.若$\overrightarrow a•\overrightarrow c=\overrightarrow b•\overrightarrow c$,則$\overrightarrow a$=$\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)f(x)=ex在x=0處的切線方程為( 。
A.y=x+1B.y=2x+1C.y=x-1D.y=2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某中學(xué)為了了解學(xué)生的文化素養(yǎng)與課外閱讀時(shí)間的關(guān)系,對(duì)該校200名高二學(xué)生每天的平均課外閱讀時(shí)間進(jìn)行調(diào)查,結(jié)果如下表:(時(shí)間單位:分鐘)
 每天平均閱讀時(shí)間(分鐘)[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
 總?cè)藬?shù) 20 36 44 50 30 20
將學(xué)生每天平均課外閱讀時(shí)間(分鐘)在[40,60)內(nèi)的學(xué)生評(píng)價(jià)為“課外閱讀達(dá)標(biāo)”
(Ⅰ)根據(jù)上述表格中的數(shù)據(jù)填寫(xiě)下面的2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提想認(rèn)為“課外閱讀達(dá)標(biāo)”與性別有關(guān)?
 課外閱讀不達(dá)標(biāo)課外閱讀達(dá)標(biāo) 合計(jì) 
男    
女   3090 
 合計(jì)   
(Ⅱ)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從該校高二學(xué)生中抽取5名學(xué)生,記被抽取的5名學(xué)生中“課外閱讀達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差
參考公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù).
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005 0.001
 k0 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知f′(x)是函數(shù)f(x)的導(dǎo)數(shù),?x∈R有f(x)-f(2-x)=6x-6.當(dāng)x>1時(shí),f′(x)<2x+1.若f(m+1)<f(2m)-3m2+m+2.則實(shí)數(shù)m的取值范圍為(-∞,$\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={x|-1≤x<2},集合B為整數(shù)集,則A∩B=(  )
A.{-1,0,1,2}B.{-1,0,1}C.{0,1}D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=cosx•sinx,給出下列四個(gè)說(shuō)法:
①f($\frac{23π}{6}$)=-$\frac{\sqrt{3}}{4}$;
②f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{4}$]上單調(diào)遞增;
③將函數(shù)f(x)的圖象向右平移$\frac{3π}{4}$個(gè)單位可得到y(tǒng)=$\frac{1}{2}$cos2x的圖象;
④f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{4}$,0)成中心對(duì)稱(chēng).
其中正確的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列各式中,值為-$\frac{\sqrt{3}}{2}$的是( 。
A.2sin15°cos15°B.2sin215°-1C.cos215°-sin215°D.cos215°+sin215°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如果圓x2+y2+2m(x+y)+2m2-8=0上總存在到點(diǎn)(0,0)的距離為$\sqrt{2}$的點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.[-1,1]B.(-3,3)C.(-3,-1)∪(1,3)D.[-3,-1]∪[1,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案