【題目】已知函數(shù))在上恒正,則實(shí)數(shù)的取值范圍為(

A.B.C.D.

【答案】B

【解析】

由題意得當(dāng)0a1時(shí),0ax2x+1[1,3]上恒成立,當(dāng)a1時(shí),ax2x+1[13]上恒成立,然后利用分離法可求出a的取值范圍.

當(dāng)0a1時(shí),函數(shù)fx)=logaax2x+)(a0a≠1)在[13]上恒正,即0ax2x+1[1,3]上恒成立,

∴﹣a,而(﹣max,(min[]min,∴a不可能,故舍去;

當(dāng)a1時(shí),函數(shù)fx)=logaax2x+)(a0a≠1)在[1,3]上恒正則ax2x+1[1,3]上恒成立,

a>(max[]max,故實(shí)數(shù)a的取值范圍為

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)在“精準(zhǔn)扶貧”行動(dòng)中,決定幫助一貧困山區(qū)將水果運(yùn)出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運(yùn)6噸且每天能運(yùn)4次,乙型車每次最多能運(yùn)10噸且每天能運(yùn)3次,甲型車每天費(fèi)用320元,乙型車每天費(fèi)用504元.若需要一天內(nèi)把180噸水果運(yùn)輸?shù)交疖囌,則通過(guò)合理調(diào)配車輛運(yùn)送這批水果的費(fèi)用最少為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】孔子曰:溫故而知新.數(shù)學(xué)學(xué)科的學(xué)習(xí)也是如此.為了調(diào)查數(shù)學(xué)成績(jī)與及時(shí)復(fù)習(xí)之間的關(guān)系,某校志愿者展開了積極的調(diào)查活動(dòng):從高三年級(jí)640名學(xué)生中按系統(tǒng)抽樣抽取40名學(xué)生進(jìn)行問(wèn)卷調(diào)查,所得信息如下:

數(shù)學(xué)成績(jī)優(yōu)秀(人數(shù))

數(shù)學(xué)成績(jī)合格(人數(shù))

及時(shí)復(fù)習(xí)(人數(shù))

20

4

不及時(shí)復(fù)習(xí)(人數(shù))

10

6

1)張軍是640名學(xué)生中的一名,他被抽中進(jìn)行問(wèn)卷調(diào)查的概率是多少(用分?jǐn)?shù)作答);

2)根據(jù)以上數(shù)據(jù),運(yùn)用獨(dú)立性檢驗(yàn)的基本思想,研究數(shù)學(xué)成績(jī)與及時(shí)復(fù)習(xí)的相關(guān)性.

參考公式:,其中為樣本容量

臨界值表:

0.25

0.15

0.10

0.05

0.025

0.010

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)試判斷函數(shù)的奇偶性,并說(shuō)明理由;

2)若,求上的最大值;

3)若,求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,的中點(diǎn),現(xiàn)將折起,使得平面及平面都與平面垂直.

1)求證:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.

1求橢圓的方程;

2過(guò)點(diǎn)的直線,交橢圓兩點(diǎn),點(diǎn)在橢圓上,坐標(biāo)原點(diǎn)恰為的重心,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若存在實(shí)數(shù),使得上的奇函數(shù),則稱是位差值為的“位差奇函數(shù)”.

1)判斷函數(shù)是否為位差奇函數(shù)?說(shuō)明理由;

2)若是位差值為的位差奇函數(shù),求的值;

3)若對(duì)任意屬于區(qū)間中的都不是位差奇函數(shù),求實(shí)數(shù)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)是拋物線的焦點(diǎn),直線相交于不同的兩點(diǎn)

1)求的方程;

2)若直線經(jīng)過(guò)點(diǎn),求的面積的最小值(為坐標(biāo)原點(diǎn));

3)已知點(diǎn),直線經(jīng)過(guò)點(diǎn)為線段的中點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列滿足,,.

1)求證:數(shù)列為等比數(shù)列;

2)對(duì)于大于的正整數(shù)、(其中),若、三個(gè)數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組

3)若數(shù)列滿足,是否存在實(shí)數(shù),使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案