【題目】如圖,在四棱錐中,底面為直角梯形,,為等邊三角形,,的中點(diǎn).

(1)證明:平面平面;

(2)求直線與平面所成角的正弦值.

【答案】(1)證明見解析;(2)

【解析】

1)要證面面平行即證線面平行,可根據(jù)面面平行的判定定理求證,可通過平面來進(jìn)行求證;

2)線面角正弦值的求法可通過等體積法進(jìn)行轉(zhuǎn)化,通過求出點(diǎn)到平面距離,再結(jié)合正弦三角函數(shù)定義即可求解

(1)取的中點(diǎn),連結(jié),

分別是的中點(diǎn),

,且,

,

,∴,

,∴平面,

平面,∴平面平面.

(2)如圖,連結(jié)

由(1)知平面,∴,

中,,同理,

在梯形中, ,,

,的中點(diǎn),∴,

由題意得,

,

設(shè)的中點(diǎn),連結(jié),由題意得,

∵平面平面,平面,平面平面,

平面

設(shè)點(diǎn)到平面的距離為,

,∴,解得.

,∴直線與平面所成角的正弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有人收集了七月份的日平均氣溫(攝氏度)與某次冷飲店日銷售額(百元)的有關(guān)數(shù)據(jù),為分析其關(guān)系,該店做了五次統(tǒng)計(jì),所得數(shù)據(jù)如下:

日平均氣溫(攝氏度)

31

32

33

34

35

日銷售額(百元)

5

6

7

8

10

由資料可知,關(guān)于的線性回歸方程是,給出下列說法:

;

②日銷售額(百元)與日平均氣溫(攝氏度)成正相關(guān);

③當(dāng)日平均氣溫為攝氏度時,日銷售額一定為百元.

其中正確說法的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在改革開放40年成就展上某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)表:

年份

2014

2015

2016

2017

2018

2019

年份代碼

1

2

3

4

5

6

年產(chǎn)量(萬噸)

6.6

6.7

7

7.1

7.2

7.4

1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

2)根據(jù)線性回歸方程預(yù)測2020年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對于一組數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留到小數(shù)點(diǎn)后兩位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)在點(diǎn)處與軸相切

(1)求的值,并求的單調(diào)區(qū)間;

(2)當(dāng)時,,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)在直線上且滿足.若,則弦中點(diǎn)的橫坐標(biāo)的取值范圍為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣精準(zhǔn)扶貧攻堅(jiān)力公室決定派遣8名干部(53女)分成兩個小組,到該縣甲、乙兩個貧困村去參加扶貧工作,若要求每組至少3人,且每組均有男干部參加,則不同的派遣方案共有______種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“互倒函數(shù)”的定義如下:對于定義域內(nèi)每一個,都有成立,若現(xiàn)在已知函數(shù)是定義域在的“互倒函數(shù)”,且當(dāng)時,成立.若函數(shù))都恰有兩個不同的零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過正方體的頂點(diǎn)作平面,使得正方體的各棱與平面所成的角都相等,則滿足條件的平面的個數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時,總有,求的最小值;

2)對于中任意恒有,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案