【題目】已知函數(shù)

(1)判斷的奇偶性;

(2)用單調(diào)性的定義證明上的增函數(shù);

(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

【答案】(1)奇函數(shù);(2)見解析;(3)

【解析】試題分析:(1)根據(jù)函數(shù)奇偶性的定義判斷即可;(2)利用單調(diào)性定義,作差后注意變形,分析差的正負即可;(3)由(1)(2)知函數(shù)是奇函數(shù),在R上遞增,轉化為,根據(jù)單調(diào)性可得對任意的恒成立,分類討論即可求解

試題解析:

(1),∵,

是奇函數(shù).

(2)任取, ,且,則

,

,∴,

,

,即,∴上是增函數(shù).

(3)∵為奇函數(shù)且在上為增函數(shù),

∴不等式化為,

對任意的恒成立,

對任意的恒成立. 

時,不等式化為恒成立,符合題意;

時,有. 

綜上, 的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】將圓上每一點的縱坐標不變,橫坐標變?yōu)樵瓉淼?/span>,得曲線C.

)寫出C的參數(shù)方程;

)設直線l C的交點為P1,P2,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1 P2的中點且與l垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

設函數(shù)

(1)證明:;

(2)若不等式的解集是非空集,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線y=Asin(ωx+φ)(A>0,ω>0)上的一個最高點的坐標為(,),由此點到相鄰最低點間的曲線與x軸交于點(π,0),φ∈(﹣,).

(1)求這條曲線的函數(shù)解析式;

(2)寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(1)若曲線與曲線在點處有相同的切線,試討論函數(shù)的單調(diào)性;

(2)若,函數(shù)上為增函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐SABC中,平面SAB⊥平面SBC,ABBC,ASAB.AAFSB,垂足為F,點E,G分別是棱SA,SC的中點.

求證:(1)平面EFG∥平面ABC;

(2)BCSA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量m=(cosx,-1),n=,函數(shù)f(x)=(m+n)·m.

(1)求函數(shù)f(x)的最小正周期;

(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,A為銳角,a=1,c=,且f(A)恰是函數(shù)f(x)在上的最大值,求A,b和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)2log3x,x[1,9],求y[f(x)]2f(x2)的最大值,及y取最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知曲線為參數(shù)),在以為極點, 軸正半軸為極軸的極坐標系中,曲線,曲線.

(1)求曲線的交點的直角坐標;

(2)設點 分別為曲線上的動點,求的最小值.

查看答案和解析>>

同步練習冊答案