3.已知數(shù)列{an}的前n項和為Sn,且Sn=3an-1.
(1)求數(shù)列{an}的通項公式;
(2)記bn=$\frac{n+1}{{a}_{n}}$(n∈N*),求數(shù)列{bn}的前n項和Tn

分析 (1)利用遞推關(guān)系與等比數(shù)列的通項公式即可得出;
(2)bn=$\frac{n+1}{{a}_{n}}$=2(n+1)$•(\frac{2}{3})^{n-1}$,利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.

解答 解:(1)∵Sn=3an-1,∴n=1時,a1=3a1-1,解得a1=$\frac{1}{2}$.
當(dāng)n≥2時,an=Sn-Sn-1=3an-1-(3an-1-1),化為:${a}_{n}=\frac{3}{2}{a}_{n-1}$.
∴數(shù)列{an}是等比數(shù)列,公比為$\frac{3}{2}$.
∴an=$\frac{1}{2}×(\frac{3}{2})^{n-1}$.
(2)bn=$\frac{n+1}{{a}_{n}}$=2(n+1)$•(\frac{2}{3})^{n-1}$,
∴數(shù)列{bn}的前n項和Tn=2$[2+3×\frac{2}{3}+4×(\frac{2}{3})^{2}$+…+$(n+1)×(\frac{2}{3})^{n-1}]$,
$\frac{2}{3}{T}_{n}$=2$[2×\frac{2}{3}+3×(\frac{2}{3})^{2}+…+n•(\frac{2}{3})^{n-1}$+$(n+1)•(\frac{2}{3})^{n}]$,
∴$\frac{1}{3}{T}_{n}$=2$[2+\frac{2}{3}+(\frac{2}{3})^{2}+…+(\frac{2}{3})^{n-1}-(n+1)•(\frac{2}{3})^{n}]$=2×$[1+\frac{1-(\frac{2}{3})^{n}}{1-\frac{2}{3}}]$-2(n+1)$•(\frac{2}{3})^{n}$=8-(2n+8)$(\frac{2}{3})^{n}$.
∴Tn=24-(6n+24)$(\frac{2}{3})^{n}$.

點評 本題考查了遞推關(guān)系、“錯位相減法”與等比數(shù)列的前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點A是橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點,F(xiàn)1,F(xiàn)2為橢圓的左、右焦點,點P為△AF1F2的內(nèi)心,若S${\;}_{△A{F}_{1}{F}_{2}}$=4S${\;}_{△{PF}_{1}{F}_{2}}$,則橢圓的離心率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,以BC為斜邊的等腰直角三角形ABC與等邊三角形ABD所在平面互相垂直,且點E滿足$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{AC}$.
(1)求證:平面EBC⊥平面ABC;
(2)求平面EBC與平面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在銳角△ABC中,$\frac{AC}{BC}$=$\frac{3}{2}$,∠B=$\frac{π}{3}$求:sin(A+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an},{bn}滿足a1=2,對?∈N*,an≠0且an≠1,且bn=(an+1)(an-2),若過點A(1,-2),B(an,bn)的直線與x軸的交點的橫坐標(biāo)為$\frac{2}{{a}_{n+1}}$,則$\frac{{a}_{2}^{2}}{_{2}}$+$\frac{{a}_{3}^{2}}{_{3}}$+$\frac{{a}_{4}^{2}}{_{4}}$+…+$\frac{{a}_{8}^{2}}{_{8}}$=-$\frac{539}{540}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\overrightarrow{a}$=($\sqrt{3}$sinωx,1),$\overrightarrow$=(cosωx,0),其中ω>0,又函數(shù)f(x)=$\overrightarrow$•($\overrightarrow{a}$-$\overrightarrow$)+k是以$\frac{π}{2}$為最小正周期的周期函數(shù),當(dāng)x∈[0,$\frac{π}{4}$]時,函數(shù)f(x)的最小值為-2
(1)求f(x)的解析式;
(2)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,已知a=20,b=28,A=40°,求B(精確到1°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)i是虛數(shù)單位,復(fù)數(shù)z滿足(1+i)z=2i50,則z的共軛復(fù)數(shù)$\overline{z}$為( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=$\sqrt{\frac{1}{lgx}-2}$的定義域為(1,$\sqrt{10}$].

查看答案和解析>>

同步練習(xí)冊答案