11.雙曲線$\frac{{x}^{2}}{9}$-y2=1與直線y=$\frac{1}{3}$x-$\frac{7}{2}$的交點個數(shù)是1.

分析 聯(lián)立方程得方程組$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}-{y}^{2}=1}\\{y=\frac{1}{3}x-\frac{7}{2}}\end{array}\right.$,從而化簡可得7x-$\frac{7×21+12}{4}$=0,從而確定交點的個數(shù).

解答 解:聯(lián)立方程可得,
$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}-{y}^{2}=1}\\{y=\frac{1}{3}x-\frac{7}{2}}\end{array}\right.$,
消y可得,
x2-(x-$\frac{21}{2}$)2=9,
即7x-$\frac{7×21+12}{4}$=0,
故x=$\frac{21×7+12}{28}$,
故方程組有且只有一組解,
故雙曲線$\frac{{x}^{2}}{9}$-y2=1與直線y=$\frac{1}{3}$x-$\frac{7}{2}$有且只有一個交點;
故答案為:1.

點評 本題考查了圖象的交點與方程組的解的關(guān)系應(yīng)用及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若將函數(shù)f(x)=cosx(sinx+cosx)-$\frac{1}{2}$的圖象向右平移φ個單位,所得函數(shù)是奇函數(shù),則φ的最小正值是( 。
A.$\frac{3π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.以下三個命題中,真命題有( 。
①若數(shù)據(jù)x1,x2,x3,…,xn的方差為1,則2x1,2x2,2x3,…,2xn的方差為4;
②對分類變量x與y的隨機(jī)變量K2的觀測值k來說,k越小,判斷“x與y有關(guān)系”的把握程度越大;
③已知兩個變量線性相關(guān),若它們的相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1.
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在R上的函數(shù)f(x)滿足:f(x)+f′(x)<1,f(0)=-1,則不等式exf(x)>ex-2(其中e為自然對數(shù)的底數(shù))的解集為(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)$\overrightarrow{m}$,$\overrightarrow{n}$,$\overrightarrow{t}$是非零向量,已知:命題p:$\overrightarrow{m}$∥$\overrightarrow{t}$,$\overrightarrow{n}$∥$\overrightarrow{t}$,則$\overrightarrow{m}$∥$\overrightarrow{n}$;命題q:若$\overrightarrow{m}$•$\overrightarrow{t}$=0,$\overrightarrow{n}$•$\overrightarrow{t}$=0則$\overrightarrow{m}$•$\overrightarrow{n}$=0,則下列命題中真命題是( 。
A.p∨qB.p∧qC.(¬p)∧(¬q)D.¬p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點P是雙曲線$\frac{{x}^{2}}{4}$-y2=1上任意一點,A、B分別是雙曲線的左右頂點,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為( 。
A.-3B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,在正方體ABCD-A1B1C1D1中,點M在B1C上,點N在BD上,并且MN∥平面AA1B1B,求證:CM=DN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}滿足a1=m(m>0),an+1=$\left\{\begin{array}{l}{{a}_{n}-1,{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$,若a3=4,則m的所有取值之積為(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,且$\overrightarrow{a}$,$\overrightarrow$的夾角為45°,則(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$)=15$\sqrt{2}$-19.

查看答案和解析>>

同步練習(xí)冊答案