1.若將函數(shù)f(x)=cosx(sinx+cosx)-$\frac{1}{2}$的圖象向右平移φ個單位,所得函數(shù)是奇函數(shù),則φ的最小正值是(  )
A.$\frac{3π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{4}$D.$\frac{π}{8}$

分析 利用三角恒等變換化簡f(x)的解析式,再利用正弦函數(shù)的奇偶性,求得φ的最小正值.

解答 解:將函數(shù)f(x)=cosx(sinx+cosx)-$\frac{1}{2}$=$\frac{1}{2}$sin2x+$\frac{1+cos2x}{2}$-$\frac{1}{2}$=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$) 的圖象向右平移φ個單位,
得到y(tǒng)=$\frac{\sqrt{2}}{2}$sin[2(x-φ)+$\frac{π}{4}$]=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$-2φ)的圖象.
再根據(jù)所得函數(shù)是奇函數(shù),則$\frac{π}{4}$-2φ=kπ,k∈Z,則φ的最小正值為$\frac{π}{8}$,
故選:D.

點評 本題主要考查三角恒等變換,正弦函數(shù)的奇偶性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.對于定義在區(qū)間D上的函數(shù)f(x),若任給x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)試判斷f(x)=x-1在區(qū)間[-2,1]上是否封閉,并說明理由;
(1)若函數(shù)g(x)=$\frac{3x+a}{x+1}$在區(qū)間[3,10]上封閉,求實數(shù)a的取值范圍;
(3)已知a<b,是否存在a,b,使函數(shù)h(x)=|1-$\frac{1}{x}$|在區(qū)間[a,b]上封閉?試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)為偶函數(shù),且f(x)=x2-$\frac{1}{x}$(x>0),則f′(-1)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列結(jié)論錯誤的是( 。
A.命題“若p,則¬q”與命題“若q,則¬p”互為逆否命題
B.命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則p∧q為真
C.“若am2<bm2,則a<b”為真命題
D.“a>0,b>0”是“$\frac{a+b}{2}$≥$\sqrt{ab}$”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,且離心率e=$\frac{1}{3}$,點P在該橢圓上滿足|PF2|=$\frac{8}{3}$c(c為焦半距)
(1)是否存在點P,使△PF1F2的邊長是由自然數(shù)構(gòu)成的公差為2的等差數(shù)列,若存在,求出實數(shù)c的值;若不存在,請說明理由;
(2)當(dāng)c=1時,A是橢圓C的左頂點,且M,N是橢圓C上的兩個動點,|$\overrightarrow{AM}$-$\overrightarrow{AN}$|=|$\overrightarrow{AM}$+$\overrightarrow{AN}$|,問直線MN是否過定點?若是,求出定點的坐標(biāo),否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a=$\frac{ln3}{2}$,b=$\frac{ln4}{3}$,c=$\frac{ln6}{5}$,則( 。
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)=$\frac{(x+a)lnx}{x+1}$(a∈R)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)若對于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求實數(shù)m的取值范圍;
(2)設(shè)函數(shù)g(x)=(x+1)f(x)-b(x-1)在[1,e]上有且只有一個零點,求實數(shù)b取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=loga(x+$\frac{a}{x}$-1)(a>0且a≠1)的值域為R,則實數(shù)a的取值范圍是0<a≤$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.雙曲線$\frac{{x}^{2}}{9}$-y2=1與直線y=$\frac{1}{3}$x-$\frac{7}{2}$的交點個數(shù)是1.

查看答案和解析>>

同步練習(xí)冊答案