如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分別是棱CC1、AB中點(diǎn),
(1)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明;
(2)求四棱錐A-ECBB1的體積。
(1)解:CF∥平面AEB1;
證明如下:取AB1的中點(diǎn)G,
連結(jié)EG,F(xiàn)G,
∵F,G分別是棱AB、AB1中點(diǎn),
,
,
,
∴四邊形FGEC是平行四邊形,
∴CF∥EG,
平面AEB,平面AEB1,
∴CF∥平面AEB1。
(2)解:∵三棱柱ABC-A1B1C1是直棱柱,
∴BB1⊥平面ABC,
平面ABC,
,
,
∴AC⊥BC,
,
∴AC⊥平面ECBB1,
,
∵E是棱CC1的中點(diǎn),
,
,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CC1、AB中點(diǎn).
(Ⅰ)求證:CF⊥BB1;
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上動(dòng)點(diǎn),F(xiàn)是AB中點(diǎn),AC=BC=2,AA1=4.
(1)求證:CF⊥平面ABB1;
(2)當(dāng)E是棱CC1中點(diǎn)時(shí),求證:CF∥平面AEB1;
(3)在棱CC1上是否存在點(diǎn)E,使得二面角A-EB1-B的大小是45°,若存在,求CE
的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分別是棱CC1、AB中點(diǎn).
(1)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明;
(2)求四棱錐A-ECBB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中點(diǎn).
(Ⅰ)求異面直線AB和C1D所成的角(用反三角函數(shù)表示);
(Ⅱ)若E為AB上一點(diǎn),試確定點(diǎn)E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)D到平面B1C1E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•莒縣模擬)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CCl、AB中點(diǎn).
(I)求證:CF⊥BB1;
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)證明:直線CF∥平面AEBl

查看答案和解析>>

同步練習(xí)冊(cè)答案