【題目】已知復(fù)數(shù)z的實(shí)部和虛部都是整數(shù),
(1)若復(fù)數(shù)z為純虛數(shù),且|z﹣1|=|﹣1+i|,求復(fù)數(shù)z;
(2)若復(fù)數(shù)z滿足z+ 是實(shí)數(shù),且1<z+ ≤6,求復(fù)數(shù)z.
【答案】
(1)解:∵z為純虛數(shù),∴設(shè)z=ai(a∈R且a≠0),
又|﹣1+i|= ,由|z﹣1|=|﹣1+i|,
得 = ,解得a=±1,∴z=±i.
(2)解:設(shè)z=a+bi(a,b∈Z,且a2+b2≠0).
則z+ =a+bi+ =a+bi+ =a+ +(b﹣ )i.
由z+ 是實(shí)數(shù),且1<z+ ≤6,∴b﹣ =0,即b=0或a2+b2=10
又1<a+ ≤6,(*)
當(dāng)b=0時,(*)化為1<a+ ≤6無解.
當(dāng)a2+b2=10時,(*)化為1<2a≤6,∴ <a≤3.
由a,b∈Z,知a=1,2,3.∴相應(yīng)的b=±3,± (舍),±1.
因此,復(fù)數(shù)z為:1±3i或3±i
【解析】(1)復(fù)數(shù)z為純虛數(shù),設(shè)出復(fù)數(shù)z,化簡|z﹣1|=|﹣1+i|,求出a,即可求復(fù)數(shù)z;(2)設(shè)z=a+bi,化簡復(fù)數(shù)z+ ,利用復(fù)數(shù)是實(shí)數(shù),且1<z+ ≤6,求解a,b,即可求復(fù)數(shù)z.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,其中.
(1)求函數(shù)的極大值點(diǎn);
(2)當(dāng)時,若在上至少存在一點(diǎn),使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中點(diǎn),面PAC⊥面ABCD.
(1)證明:ED∥面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知曲線: , : , : ,設(shè)與交于點(diǎn).
(1)求點(diǎn)的極坐標(biāo);
(2)若直線過點(diǎn),且與曲線交于兩不同的點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知斜三棱柱, , , 在底面上的射影恰為的中點(diǎn),且.
(1)求證: 平面;
(2)求到平面的距離;
(3)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)過點(diǎn)(1, ),離心率為 ,過橢圓右頂點(diǎn)A的兩條斜率乘積為﹣ 的直線分別交橢圓C于M,N兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線MN是否過定點(diǎn)D?若過定點(diǎn)D,求出點(diǎn)D的坐標(biāo);若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,其前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)有正整數(shù),使得成等差數(shù)列,求的值;
(3)設(shè),對于給定的,求三個數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓.
(1)若橢圓的離心率為,且點(diǎn)在橢圓上,①求橢圓的方程;
②設(shè)分別為橢圓的右頂點(diǎn)和上頂點(diǎn),直線和與軸和軸相交于點(diǎn),求直線的方程;
(2)設(shè) 過點(diǎn)的直線與橢圓交于兩點(diǎn),且均在的右側(cè), ,求橢圓離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在雙曲線 中,F(xiàn)1 , F2分別是左右焦點(diǎn),A1 , A2 , B1 , B2分別為雙曲線的實(shí)軸與虛軸端點(diǎn),若以A1A2為直徑的圓總在菱形F1B1F2B2的內(nèi)部,則此雙曲線 離心率的取值范圍是( )
A.
B.[ ,+∞)
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com