15.已知全集U={1,2,3,4,5,6},A={2,4,5},B={1,3,5},則(∁UA)∩(∁UB)=(  )
A.[6}B.{5}C.{1,2,3,4}D.{5,6}

分析 根據(jù)補集與交集的定義,進行計算即可.

解答 解:全集U={1,2,3,4,5,6},
A={2,4,5},B={1,3,5},
∴∁UA={1,3,6},
UB={2,4,6},
∴(∁UA)∩(∁UB)={6}.
故選:A.

點評 本題考查了集合的定義與計算問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)y=loga(2x-1)+2(a>0且a≠1)的圖象恒過點P,則點P的坐標是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{4x+3y≤12}\end{array}\right.$,則z=$\frac{x+2y+3}{x+1}$的取值范圍是(  )
A.[$\frac{2}{3}$,5]B.[$\frac{3}{2}$,11]C.[$\frac{1}{5}$,$\frac{2}{3}$]D.[$\frac{1}{5}$,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.有下列四個命題:
①“若xy=1,則x,y互為倒數(shù)”的逆命題;
②“相似三角形的周長相等”的否命題;
③“若b≤-1,則方程x2-2bx+b2+b=0有實根”的逆否命題;
④“若A∪B=B,則A?B”的逆否命題.
其中真命題是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在矩形ABCD中,$\overrightarrow{AB}=({1,-3}),\overrightarrow{AC}=({k,-2})$,則實數(shù)k=( 。
A.-5B.-4C.$\frac{2}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1是矩形,∠BAC=90°,AA1⊥BC,AA1=AC=2AB=4,且BC1⊥A1C
(1)求證:平面ABC1⊥平面A1ACC1
(2)設(shè)D是A1C1的中點,判斷并證明在線段BB1上是否存在點E,使DE∥平面ABC1,若存在,求點E到平面ABC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù) f(x)=$\left\{\begin{array}{l}{-2x(-1≤x≤0)}\\{\sqrt{x}(0<x≤1)}\end{array}\right.$,則下列圖象正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.記函數(shù)f(x)的導(dǎo)數(shù)為f(1)(x),f(1)(x)的導(dǎo)數(shù)為f(2)(x),…,f(n-1)(x)的導(dǎo)數(shù)為f(n)(x)(n∈N*),若f(x)可進行n次求導(dǎo),則f(x)均可近似表示為:f(x)≈f(0)+$\frac{{{f^{(1)}}(0)}}{1!}x+\frac{{{f^{(2)}}(0)}}{2!}{x^2}+\frac{{{f^{(3)}}(0)}}{3!}{x^3}$+…+$\frac{{{f^{(n)}}(0)}}{n!}{x^n}$,若取n=4,根據(jù)這個結(jié)論,則可近似估計cos2≈-$\frac{1}{3}$(用分數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{mx+n}{{x}^{2}+1}$(m,n為常數(shù))是定義在[-1,1]上的奇函數(shù),且f(-1)=-$\frac{1}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)解關(guān)于x的不等式f(2x-1)<-f(x).

查看答案和解析>>

同步練習冊答案