【題目】如圖所示的多面體中,EA⊥平面ABC,DB⊥平面ABC,ACBC,CMAB,垂足為M,且AEAC2,BD2BC4,

1)求證:CMME;

2)求二面角AMCE的余弦值.

3)在線段DC上是否存在一點N,使得直線BN∥平面EMC,若存在,求出的值;若不存在,請說明理由.

【答案】1)見解析(2;(3)存在,

【解析】

1)根據(jù)已知可得AECM,進而證明CM⊥平面EAM,即可證明結論;

(2)由(1)得出二面角AMCE的平面角為∠AME,解直角三角形AME,即可求出結論;

(3)以M為原點,建立空間直角坐標系,設,求出坐標和平面法向量坐標,即可求解.

1)∵EA⊥平面ABC;∴AECM,

又∵CMABABEM相交于M點,且在平面EAM內;

CM⊥平面EAM,∴CMME

2)由(1)知道,∠AME為所求的平面角;

,

;

,

所以所求二面角的余弦值為;

3)以M為原點,分別以MB,MC,為xy軸,建立空間直角坐標系;

在△ABC,可得MB1,MA3,MC;

B1,0,0),D1,0,4),

,

設平面EMC的一個法向量;

,取x2,得

;∴;

BN∥平面EMN;

;

所以

故線段DC上存在一點N,使得直線BN∥平面EMC,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】

如圖所示多面體中,AD平面PDCABCD為平行四邊形,EF分別為AD,BP的中點,AD=,AP=,PC=.

)求證:EF平面PDC;

)若CDP90°,求證BEDP;

)若CDP120°,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列{an}滿足a11,a21,an+2an+an+1,則稱數(shù)列{an}為斐波那契數(shù)列,斐波那契螺旋線是根據(jù)斐波那契數(shù)列畫出來的螺旋曲線,自然界中存在許多斐波那契螺旋線的圖案,是自然界最完美的經(jīng)典黃金比例.作圖規(guī)則是在以斐波那契數(shù)為邊的正方形拼成的長方形中畫一個圓心角為90°的扇形,連起來的弧線就是斐波那契螺旋線,如圖所示的7個正方形的邊長分別為a1,a2,,a7,在長方形ABCD內任取一點,則該點不在任何一個扇形內的概率為(

A.1B.1C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】光伏發(fā)電是利用太陽能電池及相關設備將太陽光能直接轉化為電能,近幾年在國內出臺的光伏發(fā)電補貼政策的引導下,某地光伏發(fā)電裝機量急劇上漲,如下表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

6

7

8

新增光伏裝機量兆瓦

0.4

0.8

1.6

3.1

6.1

7.1

9.7

12.2

某位同學分別用兩種模型:①,進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于

經(jīng)過計算得,,,其中,.

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由.

2)根據(jù)(1)的判斷結果及表中數(shù)據(jù)建立關于的回歸方程,并預測該地區(qū)2020年新增光伏裝機量是多少.(在計算回歸系數(shù)時精確到0.01

附:歸直線的斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓M1ab0)的長軸長為2,離心率為,過點(0,1)的直線lM交于A,B兩點,且

1)求M的方程;

2)求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,分別是橢圓短軸的上下兩個端點,是橢圓的左焦點,P是橢圓上異于點的點,若的邊長為4的等邊三角形.

寫出橢圓的標準方程;

當直線的一個方向向量是時,求以為直徑的圓的標準方程;

設點R滿足:,,求證:的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知Sn1

1)求S2,S4的值;

2)若Tn,試比較Tn的大小,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知橢圓1ab0)的焦距F1F2的長為2,經(jīng)過第二象限內一點Pm,n)的直線1與圓x2+y2a2交于A,B兩點,且OA

1)求PF1+PF2的值;

2)若,求m,n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家“十三五”計劃,提出創(chuàng)新興國,實現(xiàn)中國創(chuàng)新,某市教育局為了提高學生的創(chuàng)新能力,把行動落到實處,舉辦一次物理、化學綜合創(chuàng)新技能大賽,某校對其甲、乙、丙、丁四位學生的物理成績(x)和化學成績(y)進行回歸分析,求得回歸直線方程為1.5x35.由于某種原因,成績表(如表所示)中缺失了乙的物理和化學成績.

物理成績(x

75

m

80

85

化學成績(y

80

n

85

95

綜合素質

x+y

155

160

165

180

1)請設法還原乙的物理成績m和化學成績n

2)在全市物理化學科技創(chuàng)新比賽中,由甲、乙、丙、丁四位學生組成學校代表隊參賽.共舉行3場比賽,每場比賽均由賽事主辦方從學校代表中隨機抽兩人參賽,每場比賽所抽的選手中,只要有一名選手的綜合素質分高于160分,就能為所在學校贏得一枚榮譽獎章.若記比賽中贏得榮譽獎章的枚數(shù)為ξ,試根據(jù)上表所提供數(shù)據(jù),預測該校所獲獎章數(shù)ξ的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案