【題目】如圖所示的多面體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,CM⊥AB,垂足為M,且AE=AC=2,BD=2BC=4,
(1)求證:CM⊥ME;
(2)求二面角A﹣MC﹣E的余弦值.
(3)在線段DC上是否存在一點N,使得直線BN∥平面EMC,若存在,求出的值;若不存在,請說明理由.
【答案】(1)見解析(2);(3)存在,.
【解析】
(1)根據(jù)已知可得AE⊥CM,進而證明CM⊥平面EAM,即可證明結論;
(2)由(1)得出二面角A﹣MC﹣E的平面角為∠AME,解直角三角形AME,即可求出結論;
(3)以M為原點,建立空間直角坐標系,設,求出坐標和平面法向量坐標,即可求解.
(1)∵EA⊥平面ABC;∴AE⊥CM,
又∵CM⊥AB且AB,EM相交于M點,且在平面EAM內;
∴CM⊥平面EAM,∴CM⊥ME.
(2)由(1)知道,∠AME為所求的平面角;
,
∴;
,
,
所以所求二面角的余弦值為;
(3)以M為原點,分別以MB,MC,為x,y軸,建立空間直角坐標系;
在△ABC,可得MB=1,MA=3,MC;
則,B(1,0,0),D(1,0,4),
,
設平面EMC的一個法向量;
,取x=2,得
設;∴;
∵BN∥平面EMN;
∴;
所以;
故線段DC上存在一點N,使得直線BN∥平面EMC,
且.
科目:高中數(shù)學 來源: 題型:
【題目】
如圖所示多面體中,AD⊥平面PDC,ABCD為平行四邊形,E,F分別為AD,BP的中點,AD=,AP=,PC=.
(Ⅰ)求證:EF∥平面PDC;
(Ⅱ)若∠CDP=90°,求證BE⊥DP;
(Ⅲ)若∠CDP=120°,求該多面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列{an}滿足a1=1,a2=1,an+2=an+an+1,則稱數(shù)列{an}為斐波那契數(shù)列,斐波那契螺旋線是根據(jù)斐波那契數(shù)列畫出來的螺旋曲線,自然界中存在許多斐波那契螺旋線的圖案,是自然界最完美的經(jīng)典黃金比例.作圖規(guī)則是在以斐波那契數(shù)為邊的正方形拼成的長方形中畫一個圓心角為90°的扇形,連起來的弧線就是斐波那契螺旋線,如圖所示的7個正方形的邊長分別為a1,a2,…,a7,在長方形ABCD內任取一點,則該點不在任何一個扇形內的概率為( )
A.1B.1C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】光伏發(fā)電是利用太陽能電池及相關設備將太陽光能直接轉化為電能,近幾年在國內出臺的光伏發(fā)電補貼政策的引導下,某地光伏發(fā)電裝機量急劇上漲,如下表:
年份 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
新增光伏裝機量兆瓦 | 0.4 | 0.8 | 1.6 | 3.1 | 6.1 | 7.1 | 9.7 | 12.2 |
某位同學分別用兩種模型:①,②進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于)
經(jīng)過計算得,,,,其中,.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由.
(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù)建立關于的回歸方程,并預測該地區(qū)2020年新增光伏裝機量是多少.(在計算回歸系數(shù)時精確到0.01)
附:歸直線的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓M:1(a>b>0)的長軸長為2,離心率為,過點(0,1)的直線l與M交于A,B兩點,且.
(1)求M的方程;
(2)求點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,,分別是橢圓短軸的上下兩個端點,是橢圓的左焦點,P是橢圓上異于點,的點,若的邊長為4的等邊三角形.
寫出橢圓的標準方程;
當直線的一個方向向量是時,求以為直徑的圓的標準方程;
設點R滿足:,,求證:與的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓1(a>b>0)的焦距F1F2的長為2,經(jīng)過第二象限內一點P(m,n)的直線1與圓x2+y2=a2交于A,B兩點,且OA.
(1)求PF1+PF2的值;
(2)若,求m,n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國家“十三五”計劃,提出創(chuàng)新興國,實現(xiàn)中國創(chuàng)新,某市教育局為了提高學生的創(chuàng)新能力,把行動落到實處,舉辦一次物理、化學綜合創(chuàng)新技能大賽,某校對其甲、乙、丙、丁四位學生的物理成績(x)和化學成績(y)進行回歸分析,求得回歸直線方程為=1.5x﹣35.由于某種原因,成績表(如表所示)中缺失了乙的物理和化學成績.
甲 | 乙 | 丙 | 丁 | |
物理成績(x) | 75 | m | 80 | 85 |
化學成績(y) | 80 | n | 85 | 95 |
綜合素質 (x+y) | 155 | 160 | 165 | 180 |
(1)請設法還原乙的物理成績m和化學成績n;
(2)在全市物理化學科技創(chuàng)新比賽中,由甲、乙、丙、丁四位學生組成學校代表隊參賽.共舉行3場比賽,每場比賽均由賽事主辦方從學校代表中隨機抽兩人參賽,每場比賽所抽的選手中,只要有一名選手的綜合素質分高于160分,就能為所在學校贏得一枚榮譽獎章.若記比賽中贏得榮譽獎章的枚數(shù)為ξ,試根據(jù)上表所提供數(shù)據(jù),預測該校所獲獎章數(shù)ξ的分布列與數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com