【題目】若數(shù)列{an}滿足a11a21an+2an+an+1,則稱數(shù)列{an}為斐波那契數(shù)列,斐波那契螺旋線是根據(jù)斐波那契數(shù)列畫出來的螺旋曲線,自然界中存在許多斐波那契螺旋線的圖案,是自然界最完美的經(jīng)典黃金比例.作圖規(guī)則是在以斐波那契數(shù)為邊的正方形拼成的長方形中畫一個圓心角為90°的扇形,連起來的弧線就是斐波那契螺旋線,如圖所示的7個正方形的邊長分別為a1,a2,,a7,在長方形ABCD內(nèi)任取一點,則該點不在任何一個扇形內(nèi)的概率為(

A.1B.1C.D.

【答案】D

【解析】

由題意求得數(shù)列的前8項,求得長方形的面積,再求出6個扇形的面積和,由測度比是面積比得答案.

由題意可得,數(shù)列的前8項依次為:11,2,3,5,8,13,21

長方形的面積為

6個扇形的面積之和為

所求概率

故選:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市為了了解民眾對開展創(chuàng)建文明城市工作以來的滿意度,隨機調(diào)查了40名群眾,并將他們隨機分成A,B兩組,每組20人,A組群眾給第一階段的創(chuàng)文工作評分,B組群眾給第二階段的創(chuàng)文工作評分,根據(jù)兩組群眾的評分繪制了如圖莖葉圖:

根據(jù)莖葉圖比較群眾對兩個階段創(chuàng)文工作滿意度評分的平均值及集中程度不要求計算出具體值,給出結(jié)論即可;

根據(jù)群眾的評分將滿意度從低到高分為三個等級:

滿意度評分

低于70分

70分到89分

不低于90分

滿意度等級

不滿意

滿意

非常滿意

由頻率估計概率,判斷該市開展創(chuàng)文工作以來哪個階段的民眾滿意率高?說明理由.

完成下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為民眾對兩個階段創(chuàng)文工作的滿意度存在差異?

低于70分

不低于70分

第一階段

第二階段

附:

k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】故宮博物院五一期間同時舉辦“戲曲文化展”、“明代御窖瓷器展”、“歷代青綠山水畫展”、 “趙孟頫書畫展”四個展覽.某同學決定在五一當天的上、下午各參觀其中的一個,且至少參觀一個畫展,則不同的參觀方案共有

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)方程有3個不同的實根,求實數(shù)的取值范圍;

(Ⅲ)當時,若對于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數(shù)方程為t為參數(shù)),直線過點且傾斜角為,以坐標原點O為極點,x軸正半軸為極軸,取相同的單位長度建立極坐標系.

1)寫出曲線C的極坐標方程和直線的參數(shù)方程;

2)若直線l與曲線C交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=xex,gx)=alnx+x.

1)當ae時,求證:fxgx)恒成立;

2)當a0時,求證:fxgx+1恒有解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左右頂點,點為橢圓上一點,點關于軸的對稱點為,且.

1)若橢圓經(jīng)過圓的圓心,求橢圓的方程;

2)在(1)的條件下,若過點的直線與橢圓相交于不同的兩點,設為橢圓上一點,且滿足為坐標原點),當時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的多面體中,EA⊥平面ABCDB⊥平面ABC,ACBCCMAB,垂足為M,且AEAC2,BD2BC4,

1)求證:CMME

2)求二面角AMCE的余弦值.

3)在線段DC上是否存在一點N,使得直線BN∥平面EMC,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程在平面直角坐標系中,曲線為參數(shù)),在以平面直角坐標系的原點為極點、軸的正半軸為極軸,且與平面直角坐標系取相同單位長度的極坐標系中,曲線.

(1)求曲線的普通方程以及曲線的平面直角坐標方程;

(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標.

查看答案和解析>>

同步練習冊答案