設(shè)數(shù)列
的前n項(xiàng)和為
,令
,稱
為數(shù)列
,
,……,
的“和平均數(shù)”,已知數(shù)列
,
,……,
的“和平均數(shù)”為2012,那么數(shù)列2,
,
,……,
的“和平均數(shù)”為
記數(shù)列
,
,……,
的前n項(xiàng)和為
;數(shù)列2,
,
,……,
的前n項(xiàng)和為
,則
;根據(jù)條件知:
;于是
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
定義一個“等積數(shù)列”:在一個數(shù)列中,如果每一項(xiàng)與它后一項(xiàng)的積都是同一常數(shù),那么這個數(shù)列叫“等積數(shù)列”,這個常數(shù)叫做這個數(shù)列的公積.已知數(shù)列
是等積數(shù)列,且
,公積為5,則這個數(shù)列的前
項(xiàng)和
的計算公式為:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
定義函數(shù)
,其中
表示不超過
的最大整數(shù),當(dāng)
時,設(shè)函數(shù)
的值域?yàn)榧?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823202829591302.png" style="vertical-align:middle;" />,記
中的元素個數(shù)為
,則使
為最小時的
是( ▲ )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
滿足:
,其中
為
的前
項(xiàng)和。
(1)求數(shù)列
的通項(xiàng)公式;
(2)若
,
為
的前
項(xiàng)和,且對任意
,不等式
恒成立,求整數(shù)
的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分10分)已知數(shù)列
是公差大于
的等差數(shù)列,且滿足
,
.
(Ⅰ) 求數(shù)列
的通項(xiàng)公式;
(Ⅱ)若數(shù)列
和數(shù)列
滿足等式
(
),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本小題滿分10分)已知等差數(shù)列{
},
為其前n項(xiàng)的和,
=6,
=18,n∈N
*.
(
I)求數(shù)列{
}的通項(xiàng)公式;
(II)若
=3
,求數(shù)列{
}的前n項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
=_____________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知數(shù)列{an}的前n項(xiàng)和Sn=2n+n-1,則a1+a3= ▲ .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
(文)右數(shù)表為一組等式,如果能夠猜測
,則
.
查看答案和解析>>