14.在復(fù)平面內(nèi),已知復(fù)數(shù)z=$\frac{|1-i|+2i}{1-i}$,則z在復(fù)平面上對應(yīng)的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出z的坐標(biāo)得答案.

解答 解:∵z=$\frac{|1-i|+2i}{1-i}$=$\frac{\sqrt{2}+2i}{1-i}=\frac{(\sqrt{2}+2i)(1+i)}{(1-i)(1+i)}=\frac{\sqrt{2}-2}{2}+\frac{\sqrt{2}+2}{2}i$,
∴z在復(fù)平面上對應(yīng)的點的坐標(biāo)為($\frac{\sqrt{2}-2}{2},\frac{\sqrt{2}+2}{2}$),在第二象限.
故選:B.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$f(x)=|{\begin{array}{l}{ax}&x\\{-2}&{2x}\end{array}}|(a$為常數(shù)),$g(x)=\frac{{2{x^2}+1}}{x}$,且當(dāng)x1,x2∈[1,4]時,總有f(x1)≤g(x2),則實數(shù)a的取值范圍是$(-∞,-\frac{1}{6}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題“?x∈R,x2-4x+4≥0”的否定是( 。
A.?x∈R,x2-4x+4<0B.?x∉R,x2-4x+4<0
C.$?{x_0}∈R,{x_0}^2-4{x_0}+4<0$D.$?{x_0}∉R,{x_0}^2-4{x_0}+4<0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=4sinx•cos(x-\frac{π}{3})-\sqrt{3}$
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)fn(x)是等比數(shù)列1,x,x2,…,xn的各項和,則  f2016(2)等于( 。
A.22016-2B.22017-1C.22016-1D.22017-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等比數(shù)列{an}前n項和滿足Sn=1-A•3n,數(shù)列{bn}是遞增數(shù)列,且bn=An2+Bn,則A=1,B的取值范圍為(-3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=e1-x(-a+cosx),a∈R.
(Ⅰ)若函數(shù)y=f(x)在[0,π]存在單調(diào)增區(qū)間,求實數(shù)a的取值范圍;
(Ⅱ)若f($\frac{π}{2}$)=0,證明:對于?x∈[-1,$\frac{1}{2}$],總有f(-x-1)+2f′(x)•cos(-x-1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將一枚質(zhì)地均勻的硬幣隨機(jī)拋擲兩次,出現(xiàn)一次正面向上,一次反面向上的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)$z=\frac{2+i}{i}$的共軛復(fù)數(shù)是(  )
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

同步練習(xí)冊答案