【題目】將函數(shù)的圖象向左平移個(gè)單位長度,再向上平移1個(gè)單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有性質(zhì)_____.(填入所有正確結(jié)論的序號(hào))
①最大值為,圖象關(guān)于直線對(duì)稱;
②圖象關(guān)于y軸對(duì)稱;
③最小正周期為π;
④圖象關(guān)于點(diǎn)對(duì)稱.
【答案】②③④
【解析】
根據(jù)三角函數(shù)的圖象變換,求得函數(shù),再根據(jù)三角函數(shù)的圖象與性質(zhì),逐項(xiàng)判定,即可求解,得到答案.
由題意,將函數(shù)的圖象向左平移個(gè)單位長度,
得到的圖象,再向上平移1個(gè)單位長度,得到函數(shù)的圖象.
對(duì)于函數(shù),由于當(dāng)時(shí),,不是最值,
故的圖象不關(guān)于直線對(duì)稱,故①錯(cuò)誤;
由于函數(shù)為偶函數(shù),故它的圖象關(guān)于y軸對(duì)稱,故②正確;
函數(shù)的最小正周期為,故③正確;
當(dāng)時(shí),,故函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,故④正確;
故答案為:②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,方程f2(x)﹣af(x)+b=0(b≠0)有六個(gè)不同的實(shí)數(shù)解,則3a+b的取值范圍是( )
A.[6,11]
B.[3,11]
C.(6,11)
D.(3,11)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱長為1(單位:)的正方體木塊經(jīng)過適當(dāng)切割,得到幾何體,已知幾何體由兩個(gè)底面相同的正四棱錐組成,底面平行于正方體的下底面,且各頂點(diǎn)均在正方體的面上,則幾何體體積的取值范圍是________(單位:).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于序列A0:a0 , a1 , a2 , …,an(n∈N*),實(shí)施變換T得序列A1:a1+a2 , a2+a3 , …,an﹣1+an , 記作A1=T(A0):對(duì)A1繼續(xù)實(shí)施變換T得序列A2=T(A1)=T(T(A0)),記作A2=T2(A0);…;An﹣1=Tn﹣1(A0).最后得到的序列An﹣1只有一個(gè)數(shù),記作S(A0). (Ⅰ)若序列A0為1,2,3,求S(A0);
(Ⅱ)若序列A0為1,2,…,n,求S(A0);
(Ⅲ)若序列A和B完全一樣,則稱序列A與B相等,記作A=B,若序列B為序列A0:1,2,…,n的一個(gè)排列,請(qǐng)問:B=A0是S(B)=S(A0)的什么條件?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC, AB⊥BC, BD⊥DC,點(diǎn)E是BC邊的中點(diǎn),將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE, AC, DE,得到如圖所示的空間幾何體.
(1)求證:AB⊥平面ADC;
(2)若AD=1,AB=,求點(diǎn)B到平面ADE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+2|+|x﹣a|,x∈R
(1)若a<0,且log2f(x)>2對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(2)若a>0,且關(guān)于x的不等式f(x)< x有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,橢圓:的離心率為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為,,分別為橢圓的左頂點(diǎn)和下頂點(diǎn),為橢圓上位于第一象限內(nèi)的一點(diǎn),交軸于點(diǎn),交軸于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求的值;
(3)求證:四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知M( ,0),N(2,0),曲線C上的任意一點(diǎn)P滿足: = | |.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)曲線C與x軸的交點(diǎn)分別為A、B,過N的任意直線(直線與x軸不重合)與曲線C交于R、Q兩點(diǎn),直線AR與BQ交于點(diǎn)S.問:點(diǎn)S是否在同一直線上?若是,請(qǐng)求出這條直線的方程;若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com