【題目】在△ABC中,設(shè)角A,B,C的對(duì)邊分別為a,b,c,向量 =(cosA,sinA), =( ﹣sinA,cosA),若 =1.
(1)求角A的大;
(2)若b=4 ,且c= a,求△ABC的面積.

【答案】
(1)解:∵ =(cosA,sinA), =( ﹣sinA,cosA),且 =1,

cosA﹣sinAcosA+sinAcosA=1,

∴cosA=

則A=


(2)解:∵cosA= ,b=4 ,c= a,

∴由余弦定理得:a2=b2+c2﹣2bccosA=32+2a2﹣8 a,

解得:a=4 ,c= a=8,

則SABC= bcsinA= ×4 ×8× =16


【解析】(1)由兩向量的坐標(biāo)利用平面向量數(shù)量積運(yùn)算化簡(jiǎn)已知等式,整理后求出cosA的值,即可確定出A的度數(shù);(2)利用余弦定理列出關(guān)系式,將cosA,b,c= a代入求出a的值,進(jìn)而求出c的值,利用三角形面積公式即可求出三角形ABC面積.
【考點(diǎn)精析】掌握正弦定理的定義和余弦定理的定義是解答本題的根本,需要知道正弦定理:;余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)偶函數(shù)f(x)(x∈R)的導(dǎo)函數(shù)是函數(shù)f′(x),f(2)=0,當(dāng)x<0時(shí),xf′(x)﹣f(x)>0,則使得f(x)>0成立的x的取值范圍是(
A.(﹣∞,﹣2)∪(0,2)
B.(﹣∞,﹣2)∪(2,+∞)
C.(﹣2,0)∪(2,+∞)
D.(0,2)∪(﹣2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)的定義域?yàn)閇2a﹣1,a+1],值域?yàn)閇a+3,4a],則a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知結(jié)論:“在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則 ”,若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長(zhǎng)都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則 =(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:x2=2py(p>0),過其焦點(diǎn)作斜率為1的直線l交拋物線C于M、N兩點(diǎn),且|MN|=16. (Ⅰ)求拋物線C的方程;
(Ⅱ)已知?jiǎng)訄AP的圓心在拋物線C上,且過定點(diǎn)D(0,4),若動(dòng)圓P與x軸交于A、B兩點(diǎn),且|DA|<|DB|,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐E﹣ABCD中,底面ABCD為正方形,EC⊥平面ABCD,AB= ,CE=1,G為AC與BD交點(diǎn),F(xiàn)為EG中點(diǎn), (Ⅰ)求證:CF⊥平面BDE;
(Ⅱ)求二面角A﹣BE﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣1=0},B={x|x2﹣2ax+b=0},若A∪B=A,求實(shí)數(shù)a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U={x∈N*|x≤9},(UA)∩B={1,6},A∩(UB)={2,3},(UA)∩(UB)={4,5,7,8},則B=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lg(x﹣1)+(x﹣3)0 的定義域?yàn)椋?)
A.{x|1<x≤4}
B.{x|1<x≤4且x≠3}
C.{x|1≤x≤4且x≠3}
D.{x|x≥4}

查看答案和解析>>

同步練習(xí)冊(cè)答案