15.計算:C${\;}_{2n}^{17-n}$+C${\;}_{13+n}^{3n}$=(  )
A.29B.30C.31D.32

分析 由題意可得:$\left\{\begin{array}{l}{17-n≤2n}\\{3n≤13+n}\\{n∈{N}^{*}}\end{array}\right.$,解得n,再利用組合數(shù)的計算公式即可得出.

解答 解:由題意可得:$\left\{\begin{array}{l}{17-n≤2n}\\{3n≤13+n}\\{n∈{N}^{*}}\end{array}\right.$,解得n=6.
∴原式=${∁}_{12}^{11}$+${∁}_{19}^{18}$
=12+19
=31.
故選:C.

點評 本題考查了組合數(shù)的計算公式及其性質(zhì)、不等式的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知圓心坐標(biāo)為(1,2),且與x軸相切的圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在邊長為1的正方形ABCD中,E,F(xiàn)分別是邊BC,DC上的點,且$\overrightarrow{BE}=\frac{1}{4}\overrightarrow{BC}$,$\overrightarrow{DF}=-\overrightarrow{CF}$,則$\overrightarrow{AE}•\overrightarrow{AF}$=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+1(x≥0)\\-2x(x<0)\end{array}\right.$,求方程f(x)=10的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,過F2的直線交橢圓于P,Q兩點,若∠F1PQ=45°,|PQ|=$\sqrt{2}|P{F_1}|$,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$-1D.2-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C的極坐標(biāo)方程為ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,若直線 l:$\left\{\begin{array}{l}kx=-2+t\\ 2y=-2-2t\end{array}$(t為參數(shù))與圓C相切.求
(1)圓C的直角坐標(biāo)方程; 
(2)實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)向量$\overrightarrow a$=(2,sinθ),$\overrightarrow b$=(1,cosθ),θ為銳角.
(1 )若$\overrightarrow a$•$\overrightarrow b$=$\frac{13}{6}$,求sinθ+cosθ的值;
(2 )若$\overrightarrow a$∥$\overrightarrow b$,求tan(θ-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知方程4x2-2(k+1)x+k=0的兩根恰好是一個直角三角形的兩個銳角的余弦,若直角三角形面積為4$\sqrt{3}$,求k的值和直角三角形斜邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,則f[f(-2)]=2;使f(a)<0的a的取值范圍是(0,1).

查看答案和解析>>

同步練習(xí)冊答案