6.在邊長為1的正方形ABCD中,E,F(xiàn)分別是邊BC,DC上的點,且$\overrightarrow{BE}=\frac{1}{4}\overrightarrow{BC}$,$\overrightarrow{DF}=-\overrightarrow{CF}$,則$\overrightarrow{AE}•\overrightarrow{AF}$=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

分析 由題意可得 $\overrightarrow{AB}•\overrightarrow{AD}$=0,|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|=1,再根據(jù) $\overrightarrow{AE}•\overrightarrow{AF}$=($\overrightarrow{AB}+\frac{\overrightarrow{AD}}{4}$)•($\overrightarrow{AD}$+$\frac{\overrightarrow{AB}}{2}$),計算求得結(jié)果.

解答 解:由題意可得 $\overrightarrow{AB}•\overrightarrow{AD}$=0,|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|=1,
∴$\overrightarrow{AE}•\overrightarrow{AF}$=($\overrightarrow{AB}+\frac{\overrightarrow{AD}}{4}$)•($\overrightarrow{AD}$+$\frac{\overrightarrow{AB}}{2}$)=$\frac{{\overrightarrow{AB}}^{2}}{2}$+$\frac{3}{2}$•$\overrightarrow{AB}•\overrightarrow{AD}$+$\frac{{\overrightarrow{AD}}^{2}}{4}$=$\frac{1}{2}$+0+$\frac{1}{4}$=$\frac{3}{4}$,
故選:C.

點評 本題主要考查兩個向量的加減法的法則,以及其幾何意義,兩個向量垂直的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x≤0}\\{ln(x+a),x>0}\end{array}$,若方程f(x)=$\frac{1}{2}$有兩個不相等的實數(shù)根,則a的取值范圍是( 。
A.-$\frac{1}{2}$≤a<$\frac{1}{2}$B.$0≤a<\frac{1}{2}$C.0≤a<1D.$-\frac{1}{2}<a≤0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“α為第二象限角”是“$\frac{α}{2}$為銳角”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+2ax+3,x∈[-2,2]
(1)當a=-1時,求函數(shù)f(x)的最大值和最小值;
(2)記f(x)在區(qū)間[-2,2]上的最小值為g(a),求g(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四邊形ABCD中,AB=3,BC=7$\sqrt{3}$,CD=14,BD=7,∠BAD=120°.
(1)求AD邊的長;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題中不正確的個數(shù)是( 。
①小于90°的角是銳角;
②終邊不同的角的同名三角函數(shù)值不等;
③若sinα>0,則α是第一、二象限角;
④若α是第二象限的角,且P(x,y)是其終邊上的一點,則cosα=$\frac{-x}{{\sqrt{{x^2}+{y^2}}}}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在數(shù)列{an}中,a1=1,an+1-an=2,則a31的值為( 。
A.67B.49C.62D.61

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.計算:C${\;}_{2n}^{17-n}$+C${\;}_{13+n}^{3n}$=( 。
A.29B.30C.31D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知x≥1,則函數(shù)y=f(x)=$\frac{{4{x^2}-2x+16}}{2x-1}$的最小值為9,此時對應(yīng)的x值為$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊答案