13.已知△ABC是邊長為2的等邊三角形,P為平面ABC內(nèi)一點(diǎn),則$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$的最小值是( 。
A.-1B.$-\frac{4}{3}$C.$-\frac{3}{2}$D.-2

分析 建立坐標(biāo)系,設(shè)P(x,y),得出$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$關(guān)于x,y的表達(dá)式,配方即可得出結(jié)論.

解答 解:以BC為x軸,以BC邊上的高為y軸建立坐標(biāo)系,
則A(0,$\sqrt{3}$),設(shè)P(x,y),則$\overrightarrow{PB}+\overrightarrow{PC}$=2$\overrightarrow{PO}$=(-2x,-2y),$\overrightarrow{PA}$=(-x,$\sqrt{3}$-y),
∴$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$=2x2+2y2-2$\sqrt{3}$y=2x2+2(y-$\frac{\sqrt{3}}{2}$)2-$\frac{3}{2}$,
∴當(dāng)x=0,y=$\frac{\sqrt{3}}{2}$時(shí),$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$取得最小值-$\frac{3}{2}$.
故選:C.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)α∈{-2,-1,$\frac{1}{3}$,1,2,3},則使冪函數(shù)y=xa為奇函數(shù)且在(0,+∞)上單調(diào)遞減的a個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)a≥b≥0,求證:a3+b3≥$\sqrt{ab}$(a2+b2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合M={ x|x≥-$\frac{1}{2}$},N={x|1-x2≥0},則M∪N=(  )
A.[-$\frac{1}{2}$,1]B.[-1,1]C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線方程為y=$\frac{{\sqrt{5}}}{2}$x,且與橢圓$\frac{x^2}{12}+\frac{y^2}{3}$=1有公共焦點(diǎn),則C的方程為( 。
A.$\frac{x^2}{8}-\frac{y^2}{10}=1$B.$\frac{x^2}{5}-\frac{y^2}{4}=1$C.$\frac{x^2}{4}-\frac{y^2}{5}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{3}{5}$.
(1)求sinC的值;
(2)設(shè)BC=15,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=loga(1-ax)(a>0,a≠1),則不等式f(x)>f-1(1)的解為(  )
A.(-1,0)B.(0,1]C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,若b=2,cosB=$\frac{1}{4}$,sinC=2sinA,則α=1,△ABC的面積S=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.我國南寧數(shù)學(xué)家秦九韶所著《數(shù)學(xué)九章》中有“米谷粒分”問題,糧倉開倉收糧,糧農(nóng)送來米1512萬石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得216粒內(nèi)夾谷27粒,則這批米內(nèi)夾谷約189石.

查看答案和解析>>

同步練習(xí)冊答案