【題目】已知函數(shù),,其中為自然對數(shù)的底數(shù),.
(1)求證:;
(2)若對于任意,恒成立,求的取值范圍;
(3)若存在,使,求的取值范圍.
【答案】(1)證明見解析;
(2);
(3)或.
【解析】
(1)對利用導數(shù)研究函數(shù)的單調(diào)性及最小值,進而證明不等式;
(2)由題意得,對分成三種情況討論,進而利用參變分離,構(gòu)造新函數(shù),利用導數(shù)研究新函數(shù)的最值,從而得到的取值范圍;
(3)設(shè),題設(shè)等價于函數(shù)有零點時的的取值范圍,先對函數(shù)進行求導得,再對分成三種情況進行研究函數(shù)的零點.
解:(1)令,得,
當時,;當時,,
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
所以函數(shù)在處取得最小值,因為,
所以.
(2)由題意,得,
當,不等式顯然成立,此時;
當時,,所以,
當時,,所以,
記,,
∴在區(qū)間和上為增函數(shù),和上為減函數(shù).
∴當時,,
當時,,
綜上所述的取值范圍為.
(3)設(shè),題設(shè)等價于函數(shù)有零點時的的取值范圍.
當,,恒成立,
所以在單調(diào)遞增,
,
若,則,
只需,則,則,
所以有零點.
當時,,對恒成立,
所以無零點,不成立.
當時,,得,
則時,所以在單調(diào)遞減;
時,所以在在單調(diào)遞增,
所以,
①時,,,
又,
所以有零點;
②時,,
所以有零點;
③時,,,
所以無零點,不成立.
綜上,的取值范圍是或.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的一個焦點與拋物線的焦點重合,且此拋物線的準線被橢圓截得的弦長為.
(1)求橢圓的標準方程;
(2)直線交橢圓于、兩點,線段的中點為,直線是線段的垂直平分線,試問直線是否過定點?若是,請求出該定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)一批零件,為了解這批零件的質(zhì)量狀況,檢驗員從這批產(chǎn)品中隨機抽取了100件作為樣本進行檢測,將它們的重量(單位:g)作為質(zhì)量指標值,由檢測結(jié)果得到如下頻率分布表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
8 | ||
16 | 0.16 | |
4 | 0.04 | |
合計 | 100 | 1 |
(1)求圖中,的值;
(2)根據(jù)質(zhì)量標準規(guī)定:零件重量小于47或大于53為不合格品,重量在區(qū)間和內(nèi)為合格品,重量在區(qū)間內(nèi)為優(yōu)質(zhì)品.已知每件產(chǎn)品的檢測費用為5元,每件不合格品的回收處理費用為20元.以抽檢樣本重量的頻率分布作為該批零件重量的概率分布.若這批零件共400件,現(xiàn)有兩種銷售方案:
方案一:對剩余零件不再進行檢測,回收處理這100件樣本中的不合格品,余下所有零件均按150元/件售出;
方案二:繼續(xù)對剩余零件的重量進行逐一檢測,回收處理所有不合格品,合格品按150元/件售出,優(yōu)質(zhì)品按200元/件售出.
僅從獲得利潤大的角度考慮,該生產(chǎn)商應(yīng)選擇哪種方案?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某項娛樂活動的海選過程中評分人員需對同批次的選手進行考核并評分,并將其得分作為該選手的成績,成績大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰,成績在內(nèi)的選手可以參加復活賽,如果通過,也可以參加第二輪比賽.
(1)已知成績合格的200名參賽選手成績的頻率分布直方圖如圖,求a的值及估計這200名參賽選手的成績平均數(shù);
(2)根據(jù)已有的經(jīng)驗,參加復活賽的選手能夠進入第二輪比賽的概率為,假設(shè)每名選手能否通過復活賽相互獨立,現(xiàn)有3名選手進入復活賽,記這3名選手在復活賽中通過的人數(shù)為隨機變量X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構(gòu)為了解某學校學生使用手機的情況,在該校隨機抽取了60名學生(其中男、女生人數(shù)之比為2:1)進行問卷調(diào)查.進行統(tǒng)計后將這60名學生按男、女分為兩組,再將每組學生每天使用手機的時間(單位:分鐘)分為5組,得到如圖所示的頻率分布直方圖(所抽取的學生每天使用手機的時間均不超過50分鐘).
(1)求出女生組頻率分布直方圖中的值;
(2)求抽取的60名學生中每天使用手機時間不少于30分鐘的學生人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,丙所得為( )
A.錢B.1錢C.錢D.錢
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列,及函數(shù)(),().
(1)若等比數(shù)列滿足,,,求數(shù)列的前()項和;
(2)已知等差數(shù)列滿足,,(、均為常數(shù),,且),().試求實數(shù)對(,),使得成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有人玩擲均勻硬幣走跳棋的游戲,棋盤上標有第0站(出發(fā)地),第1站,第2站,……,第100站. 一枚棋子開始在出發(fā)地,棋手每擲一次硬幣,這枚棋子向前跳動一次,若擲出正向,棋子向前跳一站,若擲出反面,棋子向前跳兩站,直到棋子跳到第99站(獲勝)或跳到第100站(失。⿻r,該游戲結(jié)束. 設(shè)棋子跳到第站的概率為.
(1)求,,,并根據(jù)棋子跳到第站的情況寫出與、的遞推關(guān)系式();
(2)求證:數(shù)列為等比數(shù)列;
(3)求玩該游戲獲勝的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com