8.“cosα=$\frac{\sqrt{3}}{2}$”是“cos2α=$\frac{1}{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)余弦的公式和充分條件和必要條件的定義即可得到結(jié)論.

解答 解:由cosα=$\frac{\sqrt{3}}{2}$,則cos2α=2cosα2α-1=$\frac{1}{2}$,
若cos2α=$\frac{1}{2}$,則2cosα2α-1=$\frac{1}{2}$,即cosα2α=$\frac{3}{4}$,即cosα=±$\frac{\sqrt{3}}{2}$,
故“cosα=$\frac{\sqrt{3}}{2}$”是“cos2α=$\frac{1}{2}$”的充分不必要條件,
故選:A.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,利用余弦二倍角公式是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在幾何圖形ABCDEF中,AB∥CD,AD=DC=CB=CF=1,∠ABC=60°,四邊形ACEF為矩形,平面ACEF⊥平面ABCD.
(1)求證:平面FBC⊥平面ACEF;
(2)在AB上確定一點(diǎn)P,使得平面FCP∥平面AED;
(3)求三棱錐E-CDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某微信群共有60人(不包括群主),春節(jié)期間,群主發(fā)60個(gè)隨機(jī)紅包(即每個(gè)人搶到的紅包中的錢數(shù)是隨機(jī)的,且每人只能搶一個(gè)).紅包被一搶而空.據(jù)統(tǒng)計(jì),60個(gè)紅包中錢數(shù)(單位:元)分配如表:
分組[0,1)[1,2)[2,3)[3,4)[4,5)
頻數(shù)31524126
(Ⅰ)在表中作出這些數(shù)據(jù)的頻率分布直方圖;
(Ⅱ)估計(jì)紅包中錢數(shù)的平均數(shù)及中位數(shù);
(Ⅲ)若該群中成員甲、乙二人都搶到4.5元紅包,現(xiàn)系統(tǒng)將從搶到4元及以上紅包的人中隨機(jī)抽取2人給群中每個(gè)人拜年,求甲、乙二人至少有一人被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x),g(x)都定義在實(shí)數(shù)集R上,且滿足f(x)為偶函數(shù),g(x)為奇函數(shù),f(x)+g(x)=x2+x-2,試求函數(shù)f(x),g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在如圖所示的多面體ABCDE中,AB∥DE,AB⊥AD,△ACD是正三角形,AD=DE=2AB=2,$BC=\sqrt{5}$,F(xiàn)是CD的中點(diǎn).
(Ⅰ)求證AF∥平面BCE;
(Ⅱ)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)y=sinωx(ω>0)在區(qū)間$[{-\frac{π}{5},\frac{π}{4}}]$上是增函數(shù),則ω的取值范圍為(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2\sqrt{3}cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)),A,B在曲線C上,且A,B兩點(diǎn)的極坐標(biāo)分別為A(ρ1,$\frac{π}{6}$),B(ρ2,$\frac{2π}{3}$).
(I)把曲線C的參數(shù)方程化為普通方程和極坐標(biāo)方程;
(Ⅱ)求線段AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.集合A={x∈N|0≤x<3}的真子集個(gè)數(shù)為( 。
A.3B.4C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}={1^{\;}}({a>b>0})$右支上非頂點(diǎn)的一點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為B,F(xiàn)為其右焦點(diǎn),若AF⊥FB,設(shè)∠ABF=θ且$θ∈({\frac{π}{12},\frac{π}{4}})$,則雙曲線離心率的取值范圍是( 。
A.$({\sqrt{2},2}]$B.$({1,\sqrt{2}}]$C.$({\sqrt{2},+∞})$D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案