【題目】若洗水壺要用 1 分鐘、燒開水要用 10 分鐘、洗茶杯要用 2 分鐘、取茶葉要用 1 分鐘、 沏茶 1 分鐘,那么較合理的安排至少也需要 ( )
A. 10分鐘 B. 11分鐘 C. 12分鐘 D. 13分鐘
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了比較兩種治療失眠癥的藥(分別稱為A藥,B藥)的療效,隨機(jī)地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時(shí)間后,記錄他們?nèi)掌骄黾拥乃邥r(shí)間(單位:h).試驗(yàn)的觀測(cè)結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時(shí)間:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B藥的20位患者日平均增加的睡眠時(shí)間:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪種藥的療效更好?
(2)根據(jù)兩組數(shù)據(jù)繪制莖葉圖,從莖葉圖看,哪種藥的療效更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于在區(qū)間上有意義的兩個(gè)函數(shù)與,如果對(duì)任意的,均有,則稱與在上是接近的,否則稱與在上是非接近的.現(xiàn)在有兩個(gè)函數(shù)與,現(xiàn)給定區(qū)間.
(1)若,判斷與是否在給定區(qū)間上接近;
(2)是否存在,使得與在給定區(qū)間上是接近的;若存在,求的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形和矩形所在平面互相垂直,與平面及平面所成的角分別為,,、分別為、的中點(diǎn),且.
(1)求證:平面;
(2)求線段的長;
(3)求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),一個(gè)長軸端點(diǎn)為,離心率,過P分別作斜率為的直線PA,PB,交橢圓于點(diǎn)A,B。
(1)求橢圓的方程;
(2)若,則直線AB是否經(jīng)過某一定點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=AP=2,D是AP的中點(diǎn),E,F,G分別是PC,PD,CB的中點(diǎn),將△PCD沿CD折起,使點(diǎn)P在平面ABCD內(nèi)的射影為點(diǎn)D,如圖(2).
(1)求證:AP∥平面EFG;
(2)求三棱錐P-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,四邊形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=,且當(dāng)規(guī)定主視圖方向垂直平面ABCD時(shí),該幾何體的側(cè)視圖的面積為.若M、N分別是線段DE、CE上的動(dòng)點(diǎn),則AM+MN+NB的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的為( 。
A. 線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng)
B. 線性相關(guān)系數(shù)r越小,兩個(gè)變量的線性相關(guān)性越弱
C. 用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好
D. 殘差平方和越小的模型,模型擬合的效果越好
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com