【題目】設(shè)橢圓,右頂點是,離心率為.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(不同于點),若,求證:直線過定點,并求出定點坐標(biāo).
【答案】(1); (2).
【解析】
(1)由橢圓右頂點的坐標(biāo)為A(2,0),離心率,可得a,c的值,由此可得橢圓C的方程;(2)當(dāng)直線斜率不存在時,設(shè),易得,當(dāng)直線斜率存在時,直線,與橢圓方程聯(lián)立,得,由可得,從而得證.
(1)右頂點是,離心率為,
所以,∴,則,
∴橢圓的標(biāo)準(zhǔn)方程為.
(2)當(dāng)直線斜率不存在時,設(shè),
與橢圓方程聯(lián)立得:,,
設(shè)直線與軸交于點,,即,
∴或 (舍),
∴直線過定點;
當(dāng)直線斜率存在時,設(shè)直線斜率為,,則直線,與橢圓方程聯(lián)立,得,
,,,
,
,則,
即,
∴,
∴或,
∴直線或,
∴直線過定點或舍去;
綜上知直線過定點.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游區(qū)每年各個月份接待游客的人數(shù)近似地滿足周期性規(guī)律,因而第個月從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來刻畫,其中正整數(shù)表示月份且,例如表示1月份,和是正整數(shù),,. 統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
① 每年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
② 該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差400人;
③ 2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)試根據(jù)已知信息,求的表達(dá)式;
(2)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)在400或400以上時,該地區(qū)也進(jìn)入了一年中的旅游“旺季”,那么,一年中的哪幾個月是該地區(qū)的旅游“旺季”?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:與軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長;
(3)若點是直線上的動點,過點作直線與圓M相切,為切點,求四邊形面積的最小值.
【答案】(1) (2) (3)
【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進(jìn)行求解;(2) 令,得到關(guān)于的一元二次方程進(jìn)行求解;(3)將四邊形的面積的最小值問題轉(zhuǎn)化為點到直線的的距離進(jìn)行求解.
試題解析:(1) ∵圓M:與軸相切
∴ ∴
(2) 令,則 ∴
∴
(3)
∵的最小值等于點到直線的距離,
∴ ∴
∴四邊形面積的最小值為.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓與軸交于, 兩點,設(shè)直線的方程為.
(1)當(dāng)直線與圓相切時,求直線的方程;
(2)已知直線與圓相交于, 兩點.
(。┤,求實數(shù)的取值范圍;
(ⅱ)直線與直線相交于點,直線,直線,直線的斜率分別為, , ,
是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象為,則以下結(jié)論中正確的是__________.(寫出所有正確結(jié)論的編號)
①圖象關(guān)于直線對稱;
②圖象關(guān)于點對稱;
③函數(shù)在區(qū)間內(nèi)是增函數(shù);
④由的圖象向右平移個單位長度可以得到圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為F1,F2,離心率為,設(shè)過點F2的直線l被橢圓C截得的線段為MN,當(dāng)l⊥x軸時,|MN|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在一點P,使得當(dāng)l變化時,總有PM與PN所在的直線關(guān)于x軸對稱?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對于任意的,恒成立,求實數(shù)的取值范圍;
(III)設(shè)函數(shù), ,過點作函數(shù)的圖象的所有切線,令各切點的橫坐標(biāo)按從小到大構(gòu)成數(shù)列,求數(shù)列的所有項之和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是衡量空氣污染程度的一個指標(biāo),為了了解市空氣質(zhì)量情況,從年每天的值的數(shù)據(jù)中隨機(jī)抽取天的數(shù)據(jù),其頻率分布直方圖如圖所示.將值劃分成區(qū)間、、、,分別稱為一級、二級、三級和四級,統(tǒng)計時用頻率估計概率 .
(1)根據(jù)年的數(shù)據(jù)估計該市在年中空氣質(zhì)量為一級的天數(shù);
(2)按照分層抽樣的方法,從樣本二級、三級、四級中抽取天的數(shù)據(jù),再從這個數(shù)據(jù)中隨機(jī)抽取個,求僅有二級天氣的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b,c為實數(shù),f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).記集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分別為集合S,T 的元素個數(shù),則下列結(jié)論不可能的是( )
A.{S}=1且{T}=0B.{S}=1且{T}=1C.{S}=2且{T}=2D.{S}=2且{T}=3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com