如圖,空間直角坐標(biāo)系中,有一棱長(zhǎng)為4的正方體ABCD-A1B1C1D1,A1C的中點(diǎn)E到AB的中點(diǎn)F的距離為( 。
A、4
2
B、2
2
C、4
D、2
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專題:計(jì)算題,空間位置關(guān)系與距離
分析:求出C(0,4,0),A1(4,0,4),A(4,0,0),B(4,4,0),運(yùn)用中點(diǎn)坐標(biāo)公式和空間兩點(diǎn)的距離公式,即可得到.
解答: 解:如圖,C(0,4,0),A1(4,0,4),A(4,0,0),B(4,4,0),
則A1C的中點(diǎn)E(2,2,2),AB的中點(diǎn)F(4,2,0),
則兩點(diǎn)E,F(xiàn)的距離為|EF|=
(2-4)2+(2-2)2+(2-0)2

=2
2

故選B.
點(diǎn)評(píng):本題考查空間直角坐標(biāo)系中的中點(diǎn)坐標(biāo)公式和兩點(diǎn)的距離公式,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域:
(1)y=
x+1
x+2
               (2)y=
1
6-5x-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+3x2-9x+1
(Ⅰ)求曲線y=f(x)在(1,c)處的切線方程;
(Ⅱ)若函數(shù)y=f(x)在區(qū)間[k,2]上的最大值為28,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=|x-2|-2的圖象與x軸所圍成的三角形面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A,∠B,∠C的對(duì)邊分別是a、b、c,且(2a-c)cosB=bcosC,求:
(1)∠B;
(2)當(dāng)a=3、c=2時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題錯(cuò)誤的是( 。
A、命題“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆否命題為“若方程x2+x-m=0無(wú)實(shí)數(shù)根,則m≤0”
B、“x=1”是“x2-3x+2=0”的充分不必要條件
C、對(duì)于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1≥0
D、若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
kx+1,x≤0
log3x,x>0
,下列關(guān)于函數(shù)y=f[f(x)]-
1
2
零點(diǎn)個(gè)數(shù)的四個(gè)判斷:
(1)當(dāng)k>0時(shí),有3個(gè)零點(diǎn);
(2)當(dāng)k<0時(shí),有2個(gè)零點(diǎn);
(3)當(dāng)k>0時(shí),有4個(gè)零點(diǎn);
(4)當(dāng)k<0時(shí),有1個(gè)零點(diǎn)
則正確的判斷是( 。
A、(1)(4)
B、(2)(3)
C、(1)(2)
D、(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a、b是直線,α是平面,給出下列四個(gè)命題:
①若a∥b,a∥α,則b∥α;
②若a∥α,b∥α,則a∥b;
③若a∥b,b與α相交,則a與α也相交;
④若a與b異面,a∥α,則b∥α.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:(3+a)x-4y=5-3a;l2:2x-(5+a)y=8
(1)a為何值時(shí),l1⊥l2
(2)當(dāng)a=0時(shí),求圓C:x2+y2+4x-12y+39=0關(guān)于直線l1對(duì)稱的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案