A. | ef(1)<f(2) | B. | f(1)<0 | C. | ef(e)<2f(2) | D. | f(1)<2ef(2) |
分析 根據(jù)條件構造函數(shù)F(x)=xexf (x),求出函數(shù)的導數(shù),得到F′(x)=ex[(x+1)f(x)+xf′(x)]≥0對x∈[0,+∞)恒成立,得出函數(shù)F(x)=xexf (x)在[0,+∞)上單調遞增,利用函數(shù)的單調性和導數(shù)之間的關系進行求解即可.
解答 解:構造函數(shù)F(x)=xexf (x),則F′(x)=ex[(x+1)f(x)+xf′(x)],
∵(x+1)f(x)+xf'(x)≥0,
∴F′(x)≥0對x∈[0,+∞)恒成立,
∴函數(shù)F(x)=xexf (x)在[0,+∞)上單調遞增,
∴F(1)<F(2),
∴f(1)<2ef(2),
故選:D.
點評 本題主要考查函數(shù)值的大小,結合條件,構造函數(shù),求函數(shù)的導數(shù),利用函數(shù)的單調性和導數(shù)的關系是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,-1) | C. | (3,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 10 | C. | 5 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com