分析 (Ⅰ)連接CD1,推導(dǎo)出A1BCD1為平行四邊形,從而A1B∥EN,由此能證明A1B∥平面EMN.
(Ⅱ)由A1B∥EN,得∠ENM為A1B與MN所成的角,由此能求出A1B與MN所成的角.
解答 證明:(Ⅰ)連接CD1,∵N、E分別為C1C、D1C1的中點(diǎn),
∴EN∥CD1,
又∵ABCD-A1B1C1D1為正方體,
∴A1BCD1為平行四邊形,∴A1B∥CD1,
∴A1B∥EN,
∵EN?面EMN,A1B?面EMN,
∴A1B∥平面EMN.
解:(Ⅱ)∵A1B∥EN,∴∠ENM為A1B與MN所成的角,
∵$EM=MN=EN=\sqrt{2}$,∴∠ENM=60°,
∴A1B與MN所成的角為60°.
點(diǎn)評(píng) 本題考查線(xiàn)面平行的證明,考查異面直線(xiàn)所成角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{169π}{6}$cm3 | B. | $\frac{676π}{3}$cm3 | C. | $\frac{8788π}{3}$cm3 | D. | $\frac{2197π}{6}$cm3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com