1.若集合A={x|x2-2x-3>0},集合B={x|3x>8},則A∩B等于(  )
A.(-1,3)B.(-∞,-1)C.(3,+∞)D.(log38,+∞)

分析 先分別求出集合A和集合B,由此利用交集定義能求出A∩B的值.

解答 解:∵集合A={x|x2-2x-3>0}={x|x<-1或x>3},
集合B={x|3x>8}={x|x>log38},
∴A∩B={x|x>3}=(3,+∞).
故選:C.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意一元二次不等式、指數(shù)不等式、交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆河北衡水中學(xué)高三上學(xué)期調(diào)研三考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.

(1)若直線與曲線交于兩點(diǎn),求的值;

(2)求曲線的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆河北衡水中學(xué)高三上學(xué)期調(diào)研三考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

,則的最小值為( )

A.8 B.6 C.4 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆廣西南寧二中等校高三8月聯(lián)考數(shù)學(xué)(文)試卷(解析版) 題型:填空題

滿足約束條件,那么的最大值是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆廣西南寧二中等校高三8月聯(lián)考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

設(shè)函數(shù),求( )

A.8 B.15 C.7 D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.復(fù)數(shù)z滿足(1+i)z=|$\sqrt{3}$-i|,則$\overline{z}$=(  )
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知(1+ax)5(1-2x)4的展開式中x2的系數(shù)為-16,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)曲線C的極坐標(biāo)方程為ρ(1+cos2θ)=8sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2a+t}\\{y=3a-t}\end{array}\right.$ (t為參數(shù)).
(I)求曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C相切,求直線l與兩坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=$\frac{1}{2}$(弦×矢+矢2),弧田(如圖)由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為$\frac{2π}{3}$,半徑等于4米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約是( 。
A.6平方米B.9平方米C.12平方米D.15平方米

查看答案和解析>>

同步練習(xí)冊(cè)答案