Processing math: 0%
16.下列說法:
①正切函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
②函數(shù)f(x)=cos(\frac{2}{3}x+\frac{π}{2})是奇函數(shù);
x=\frac{π}{8}是函數(shù)f(x)=sin(2x+\frac{5π}{4})的一條對(duì)稱軸方程;
④扇形的周長(zhǎng)為8cm,面積為4cm2,則扇形的圓心角為2rad;
⑤若α是第三象限角,則\frac{{|{sin\frac{α}{2}}|}}{{sin\frac{α}{2}}}+\frac{{|{cos\frac{α}{2}}|}}{{cos\frac{α}{2}}}取值的集合為{-2,0},
其中正確的是②③④.(寫出所有正確答案的序號(hào))

分析 ①,正切函數(shù)y=tanx在(kπ-\frac{π}{2},kπ+\frac{π}{2})k∈Z內(nèi)是增函數(shù);
②,函數(shù)f(x)=cos(\frac{2}{3}x+\frac{π}{2})=-sin\frac{2}{3}x在判斷;
③,驗(yàn)證當(dāng)x=\frac{π}{8}時(shí),函數(shù)f(x)=sin(2x+\frac{5π}{4})是否取最值;
④,由2r+l=8,\frac{1}{2}lr=4,德l=4,r=2,即可得扇形的圓心角的弧度數(shù);
⑤,若α是第三象限角,則\frac{α}{2}在第二、四象限,分別求值即可,

解答 解:對(duì)于①,正切函數(shù)y=tanx在(kπ-\frac{π}{2},kπ+\frac{π}{2})k∈Z內(nèi)是增函數(shù),故錯(cuò);
對(duì)于②,函數(shù)f(x)=cos(\frac{2}{3}x+\frac{π}{2})=-sin\frac{2}{3}x是奇函數(shù),故正確;
對(duì)于③,∵當(dāng)x=\frac{π}{8}時(shí)函數(shù)f(x)=sin(2x+\frac{5π}{4})取得最小值,故正確;
對(duì)于④,設(shè)扇形的弧長(zhǎng)為l,半徑為r,所以2r+l=8,\frac{1}{2}lr=4,
所以l=4,r=2,所以扇形的圓心角的弧度數(shù)是:\frac{4}{2}=2.故正確;
對(duì)于⑤,若α是第三象限角,則\frac{α}{2}在第二、四象限,則\frac{{|{sin\frac{α}{2}}|}}{{sin\frac{α}{2}}}+\frac{{|{cos\frac{α}{2}}|}}{{cos\frac{α}{2}}}取值的集合為{0},故錯(cuò),
故答案為:②③④

點(diǎn)評(píng) 本題考查了命題真假的判定,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0)以x=-2為準(zhǔn)線方程,過x軸上一定點(diǎn)P(3,0)作直線l與拋物線交于不同的兩點(diǎn)A、B
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若向量\overrightarrow{a}、\overrightarrow滿足|\overrightarrow{a}+\overrightarrow|=2,|\overrightarrow{a}-\overrightarrow|=3,則|\overrightarrow{a}|•|\overrightarrow|的取值范圍是[\frac{5}{4},\frac{13}{4}].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點(diǎn)M(x,y)是平面直角坐標(biāo)系中的動(dòng)點(diǎn),若A(-4,0),B(-1,0),且△ABM中|MA|=2|MB|.
(Ⅰ) 求點(diǎn)M的軌跡C的方程及求△ABM的周長(zhǎng)的取值范圍;
(Ⅱ) 直線MB與軌跡C的另一交點(diǎn)為M',求\frac{{S}_{△AMB}}{{S}_{△{AM}^{′}B}}的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=\frac{a}{2}sinx+\frac{3}tanx+2cos\frac{π}{3},且f(2)=-1,則f(-2)=( �。�
A.3B.2C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)={a^x}+\frac{1-t}{a^2}(a>0,a≠1)是定義域?yàn)镽上的奇函數(shù).
(1)求實(shí)數(shù)t的值;
(2)若f(1)>0,不等式f(x2+bx)+f(4-x)>0在x∈R上恒成立,求實(shí)數(shù)b的取值范圍;
(3)若f(1)=\frac{3}{2}h(x)={a^{2x}}+\frac{1}{{{a^{2x}}}}-2mf(x)[1,+∞)上最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.三個(gè)數(shù)40.2,30.4,log0.40.5的大小順序是( �。�
A.30.4<40.2<log0.40.5B.{3^{0.4}}<{log_{0.4}}0.5<{4^{0.2}}
C.{log_{0.4}}0.5<{3^{0.4}}<{4^{0.2}}D.{log_{0.4}}0.5<{4^{0.2}}<{3^{0.4}}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,AB⊥平面BCC1B1,∠BC{C_1}=\frac{π}{3},AB=B{B_1}=2,BC=1,D為CC1的中點(diǎn).
(1)求證:DB1⊥平面ABD;
(2)求點(diǎn)A1到平面ADB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=xlnx,x∈(0,+∞),其導(dǎo)函數(shù)為f′(x),現(xiàn)有如下命題:
①對(duì)?x1∈(0,+∞),?x2∈(0,+∞),使得x2f(x1)>x1f(x2);
②?x1∈(0,+∞),對(duì)?x2∈(0,+∞)且x1≠x2,使得f(x1)-f(x2)<x2-x1
③當(dāng)a>3時(shí),對(duì)?x∈(0,+∞),不等式f(a+x)<f(a)•ex恒成立;
④當(dāng)a>3時(shí),對(duì)?x∈(3,+∞),且x≠a時(shí),不等式f(x)>f(a)+f′(a)(x-a)恒成立;其中真命題的個(gè)數(shù)為( �。�
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案