3.已知α∈(0,π),且sinα+cosα=$\frac{\sqrt{2}}{2}$,求sinα-cosα的值.

分析 把已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間的基本關(guān)系變形求出2sinαcosα的值,進(jìn)而判斷出sinα-cosα的正負(fù),利用完全平方公式及同角三角函數(shù)間的基本關(guān)系即可求出sinα-cosα的值.

解答 解:把sinα+cosα=$\frac{\sqrt{2}}{2}$①,兩邊平方得:(sinα+cosα)2=1+2sinαcosα=$\frac{1}{2}$,
∴2sinαcosα=-$\frac{1}{2}$,
∵α∈(0,π),
∴sinα>0,cosα<0,即sinα-cosα>0,
∴(sinα-cosα)2=1-2sinαcosα=$\frac{3}{2}$,
∴sinα-cosα=$\frac{\sqrt{6}}{2}$.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)f(x)=x•|2x-a|(a>0)在區(qū)間[1,2]上的最小值為2,則a=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知tanα=$\frac{1}{3}$,cosβ=$\frac{\sqrt{5}}{5}$,且0<α<$\frac{π}{2}$,$\frac{3π}{2}$<β<2π,則α+β=$\frac{7π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知過(guò)點(diǎn)P(0,-1)的直線(xiàn)與曲線(xiàn)y=1nx相切,這條直線(xiàn)也與曲線(xiàn)y=ax2+5x+1(α≠0)相切,則a的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,M為AB邊上一點(diǎn),$\overrightarrow{CM}$=λ$\overrightarrow{MP}$(λ∈R)且$\overrightarrow{MP}$=$\frac{\overrightarrow{CA}}{|\overrightarrow{CA}|cosA}$+$\frac{\overrightarrow{CB}}{|\overrightarrow{CB}|cosB}$.又已知|$\overrightarrow{CM}$|=$\frac{c}{2}$,a2+b2=2$\sqrt{2}$ab,則角C=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若S7<0,a5>|a4|,則使Sn>0成立的最小正整數(shù)n為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在柱坐標(biāo)系中畫(huà)出下列各點(diǎn),并把它們化成空間直角坐標(biāo)系;
A(4,$\frac{3π}{4}$,2);
B(6,$\frac{π}{3}$,-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=2{cos^2}x+2\sqrt{3}sinxcosx-1$.
(1)求f(x)的周期.
(2)當(dāng)$x∈[{0,\frac{π}{2}}]$時(shí),求f(x)的最大值、最小值及對(duì)應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,輸出P的值為( 。
A.-1B.1C.0D.2016

查看答案和解析>>

同步練習(xí)冊(cè)答案