給出下列四個函數(shù):①y=x+sinx;②y=x2-cosx;③y=2x-2-x;④y=ex+lnx,其中既是奇函數(shù),又在區(qū)間(0,1)上單調(diào)的函數(shù)是________.(寫出所有滿足條件的函數(shù)的序號)
①③
分析:由題意,可先由函數(shù)奇偶性的判斷規(guī)則找出四個函數(shù)的奇函數(shù),再利用導(dǎo)數(shù)與函數(shù)單調(diào)性的判斷規(guī)則對是奇函數(shù)的函數(shù)的單調(diào)性進(jìn)行判斷,找出符號題意的函數(shù)即可得到答案
解答:考察四個函數(shù),:①y=x+sinx與;③y=2x-2-x;這兩個函數(shù)是奇函數(shù),;②y=x2-cosx;是偶函數(shù),;④y=ex+lnx的定義域不關(guān)于原點(diǎn)對稱是非奇非偶函數(shù)
由此可排除②④
對于函數(shù)①,y′=1+cosx≥0故是單調(diào)函數(shù),符合題意
對于函數(shù);③y=2x-2-x,由于函數(shù)2x是增函數(shù),函數(shù)2-x是減函數(shù),故y=2x-2-x是增函數(shù),
綜上判斷知,既是奇函數(shù),又在區(qū)間(0,1)上單調(diào)的函數(shù)是①③
故答案為①③
點(diǎn)評:本題考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及函數(shù)奇偶性的判斷方法,函數(shù)單調(diào)性的判斷方法,有一定的綜合性,解題的關(guān)鍵是熟練掌握函數(shù)奇偶性與單調(diào)性的判斷方法,且能根據(jù)題設(shè)條件靈活選用判斷的手段.本題考查了推理誰的能力及觀察判斷的能力,屬于函數(shù)單調(diào)性與奇偶性綜合運(yùn)用的常見題型.