【題目】已知函數(shù)

(1)當時,求函數(shù)在點處的切線方程;

(2)求函數(shù)的極值;

(3)若函數(shù)在區(qū)間上是增函數(shù),試確定的取值范圍.

【答案】(1);(2)當時, 恒成立, 不存在極值.當時,

有極小值無極大值.(3)

【解析】試題分析:

(1)當時,求得,得到的值,即可求解切線方程.

(2)由定義域為,求得,分時分類討論得出函數(shù)的單調(diào)區(qū)間,即可求解函數(shù)的極值.

(3)根據(jù)題意上遞增,得恒成立,進而求解實數(shù)的取值范圍.

試題解析:

(1)當時, , ,

,又,∴切線方程為.

(2)定義域為, ,當時, 恒成立, 不存在極值.

時,令,得,當時, ;當時,

所以當時, 有極小值無極大值.

(3)∵上遞增,∴恒成立,即恒成立,∴

點睛:導數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學中重要的知識點,所以在歷屆高考中,對導數(shù)的應用的考查都非常突出 ,本專題在高考中的命題方向及命題角度 從高考來看,對導數(shù)的應用的考查主要從以下幾個角度進行: (1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系(2)利用導數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù)(3)考查數(shù)形結(jié)合思想的應用

型】解答
結(jié)束】
22

【題目】已知圓 和點, 是圓上任意一點,線段的垂直平分線和相交于點 的軌跡為曲線

(1)求曲線的方程;

(2)點是曲線軸正半軸的交點,直線、兩點,直線, 的斜率分別是, ,若,求:①的值;②面積的最大值.

【答案】(1);(2)①.

【解析】試題分析:

(1)由圓的方程得圓心為,半徑為,可得, ,

所以曲線 為焦點,長軸長為的橢圓,即可求解橢圓的方程;

(2)①由直線方程和橢圓的方程聯(lián)立方程組,由,解得 ,根據(jù),化簡得即可解得的值;

②由題意,利用均值不等式,即可求解面積的最大值.

試題解析:

(1)圓 的圓心為,半徑為,點 在圓內(nèi), ,

所以曲線, 為焦點,長軸長為的橢圓,

, ,得,所以曲線的方程為

(2)①設, ,直線 ,聯(lián)立方程組

,

,解得, , ,

,

,代入化簡得,解得,

(當且僅當時取等號).

綜上, 面積的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某投資人打算投資甲乙兩個項目,根據(jù)預測,、乙項目可能的最大盈利率分別為100%50%,可能的最大虧損率分別為30%10%,投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元,問投資人對甲乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)a為實數(shù)).

(1) 若函數(shù)處的切線與直線平行,求實數(shù)a的值;

(2) 若,求函數(shù)在區(qū)間上的值域;

(3) 若函數(shù)在區(qū)間上是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,且該幾何體的體積是3,則正視圖的的值__________

【答案】3

【解析】 由已知中的三視圖可得該幾何體是一個以直角梯形為底面,梯形上下邊長為,高為,

如圖所示, 平面,

所以底面積為,

幾何體的高為,所以其體積為

點睛:在由三視圖還原為空間幾何體的實際形狀時,要從三個視圖綜合考慮,根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線在還原空間幾何體實際形狀時,一般是以正視圖和俯視圖為主,結(jié)合側(cè)視圖進行綜合考慮求解以三視圖為載體的空間幾何體的體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應體積公式求解

型】填空
結(jié)束】
16

【題目】已知橢圓 的右焦點為 為直線上一點,線段于點,若,則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

【答案】(1);(2)

【解析】試題分析:

先由命題解;命題,

(1)當,得命題,再由為真,得真且真,即可求解的取值范圍.

(2)由的充分不必要條件,則的充分必要條件,根據(jù)則 ,即可求解實數(shù)的取值范圍.

試題解析:

命題:由題得,又,解得;

命題 ,解得

(1)若,命題為真時,

為真,則真且真,

解得的取值范圍是

(2)的充分不必要條件,則的充分必要條件,

, ,則

∴實數(shù)的取值范圍是

型】解答
結(jié)束】
19

【題目】已知拋物線頂點在原點,焦點在軸上,又知此拋物線上一點到焦點的距離為6.

(1)求此拋物線的方程;

(2)若此拋物線方程與直線相交于不同的兩點、,且中點橫坐標為2,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,a4=2且,數(shù)列滿足 ,

(1)證明:數(shù)列{an}為等差數(shù)列;

(2)是否存在正整數(shù),(1<),使得成等比數(shù)列,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的前項和為,若數(shù)列的各項按如下規(guī)律排列;有如下運算結(jié)論:①;②數(shù)列是等比數(shù)列;③數(shù)列的前項和為;④若存在正整數(shù),使得,則

其中正確的結(jié)論是________(將你認為正確的結(jié)論序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“把你的心我的心串一串,串一株幸運草串一個同心圓…”一位數(shù)學老師一這句歌詞為靈感構(gòu)造了一道名為《愛2017》的題目,請你解答此題:設O為坐標原點,直線l與圓C1x2+y2=1相切且與圓C2x2+y2=r2r1)相交于A、B兩不同點,已知Ex1,y1)、Fx2y2)分別是圓C1、圓C2上的點.

(1)求r的值;

(2)求OEF面積的最大值;

(3)若OEF的外接圓圓心P在圓C1上,已知點D(3,0),求|DE|2+|DF|2的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若為偶函數(shù),求的值并寫出的增區(qū)間;

(Ⅱ)若關于的不等式的解集為,當時,求的最小值;

(Ⅲ)對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案