【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如圖所示.經(jīng)銷商為下一個銷售季度購進(jìn)了該農(nóng)產(chǎn)品.以)表示下一個銷售季度內(nèi)的市場需求量, (單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(Ⅰ)將表示為的函數(shù);

(Ⅱ)根據(jù)直方圖估計利潤不少于57000元的概率.

【答案】(T=.()下一個銷售季度的利潤T不少于57000元的概率的估計值為0.7

【解析】試題分析:(I)由題意先分段寫出,當(dāng)X∈[100,130)時,當(dāng)X∈[130,150)時,和利潤值,最后利用分段函數(shù)的形式進(jìn)行綜合即可.

II)由(I)知,利潤T不少于57000元,當(dāng)且僅當(dāng)120≤X≤150.再由直方圖知需求量X∈[120,150]的頻率為0.7,利用樣本估計總體的方法得出下一個銷售季度的利潤T不少于57000元的概率的估計值.

解:(I)由題意得,當(dāng)X∈[100130)時,T=500X﹣300130﹣X=800X﹣39000

當(dāng)X∈[130,150]時,T=500×130=65000,

∴T=

II)由(I)知,利潤T不少于57000元,當(dāng)且僅當(dāng)120≤X≤150

由直方圖知需求量X∈[120150]的頻率為0.7,

所以下一個銷售季度的利潤T不少于57000元的概率的估計值為0.7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校組織“中國詩詞”競賽,在“風(fēng)險答題”的環(huán)節(jié)中,共為選手準(zhǔn)備了三類不同的題目,選手每答對一個類、類或類的題目,將分別得到分, 分, 分,但如果答錯,則相應(yīng)要扣去分, 分, 分,根據(jù)平時訓(xùn)練經(jīng)驗,選手甲答對類、類或類的題目的概率分別為、、,若要每一次答題的均分更大一些,則選手甲應(yīng)選擇的題目類型應(yīng)為_________.(填

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求的普通方程和的傾斜角;

(2)設(shè)點, 交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求的值;

(2)證明: 上的增函數(shù);

3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點,直線交與 ,求, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面,四邊形是菱形, , ,且 交于點, 上任意一點.

(1)求證: ;

(2)已知二面角的余弦值為,若的中點,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若曲線在點處的切線與軸垂直,求的值;

(Ⅱ)若函數(shù)有兩個極值點,求的取值范圍;

(Ⅲ)證明:當(dāng)時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓 上一點軸作垂線,垂足為右焦點, 、分別為橢圓的左頂點和上頂點,且, .

(Ⅰ)求橢圓的方程;

(Ⅱ)若動直線與橢圓交于、兩點,且以為直徑的圓恒過坐標(biāo)原點.問是否存在一個定圓與動直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè)為曲線在點處的切線,其中.

(Ⅰ)求直線的方程(用表示);

(Ⅱ)求直線軸上的截距的取值范圍;

(Ⅲ)設(shè)直線分別與曲線和射線)交于, 兩點,求的最小值及此時的值.

查看答案和解析>>

同步練習(xí)冊答案