已知實(shí)數(shù)x,y滿足條件
x-y-2≤0
x+y+2≥0
y≤0
,那么目標(biāo)函數(shù)z=x+2y的最小值是( 。
A、-6B、-4C、-2D、4
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最小值.
解答: 解:作出不等式對(duì)應(yīng)的平面區(qū)域,
由z=x+2y,得y=-
1
2
x+
z
2

平移直線y=-
1
2
x+
z
2
,由圖象可知當(dāng)直線y=-
1
2
x+
z
2
經(jīng)過點(diǎn)C(0,-2)時(shí),
直線y=-
1
2
x+
z
2
的截距最小,此時(shí)z最。
此時(shí)z的最小值為z=0+2×(-2)=-4,
故選:B.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),且f(x)≤f(
9
)對(duì)x∈R恒成立.記P=f(
3
),Q=f(
6
),R=f(
6
),則P,Q,R的大小關(guān)系是( 。
A、R<P<Q
B、Q<R<P
C、P<Q<R
D、Q<P<R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)a,b,c滿足a+2b+3c=6,求證:
a+1
+
2b+2
+
3c+3
≤6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

邊長為2的正三角形的頂點(diǎn)和各邊的中點(diǎn)共6個(gè)點(diǎn),從中任選兩點(diǎn),所選出的兩點(diǎn)之間距離大于1的概率是( 。
A、
1
3
B、
1
2
C、
2
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論成立的是( 。
A、若ac>bc,則a>b
B、若a>b,則a2>b2
C、若a>b,c<d,則a+c>b+d
D、若a>b,c>d,則a-d>b-c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,
3+i
1-i
=a+bi(i為虛數(shù)單位),則a+b=( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:直線m,n相交,命題q:直線m,n異面,則?p是q成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1<x<8},B={x|x-6<0},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),離心率為e,半長軸長為a.
(1)若焦距長2c=2,且1、e、
1
4
成等比數(shù)列,求橢圓C的方程;
(2)在(1)的條件下,直線l:ex-y+a=0與x軸、y軸分別相交于M、N 兩點(diǎn),p是直線l與橢圓C的一個(gè)交點(diǎn),且
MP
MN
,求λ的值;
(3)若不考慮(1),在(2)中,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案