【題目】某單位決定建造一批簡(jiǎn)易房(房型為長(zhǎng)方體狀,房高2.5米),前后墻用2.5米高的彩色鋼板,兩側(cè)用2.5米高的復(fù)合鋼板,兩種鋼板的價(jià)格都用長(zhǎng)度來(lái)計(jì)算(即:鋼板的高均為2.5米,用鋼板的長(zhǎng)度乘以單價(jià)就是這塊鋼板的價(jià)格),每米單價(jià):彩色鋼板為450元,復(fù)合鋼板為200元.房頂用其它材料建造,每平方米材料費(fèi)為200元.每套房材料費(fèi)控制在32000元以內(nèi).
(1)設(shè)房前面墻的長(zhǎng)為x,兩側(cè)墻的長(zhǎng)為y,所用材料費(fèi)為p,試用x,y表示p;
(2)在材料費(fèi)的控制下簡(jiǎn)易房面積S的最大值是多少?并指出前面墻的長(zhǎng)度x應(yīng)為多少米時(shí)S最大.
【答案】
(1)解:依題得,p=2x×450+2y×200+xy×200=900x+400y+200xy
即p=900x+400y+200xy
(2)解:∵S=xy,∴p=900x+400y+200xy≥ +200S=200S+1200 ,
又因?yàn)閜≤3200,所以200S+1200 ≤3200,
解得﹣16≤ ≤10,
∵S>0,∴0<S≤100,當(dāng)且僅當(dāng) ,即x= 時(shí)S取得最大值
【解析】(1)根據(jù)題意可分別求得前面墻,兩側(cè)墻和房頂?shù)馁M(fèi)用,三者相加即可求得P.(2)利用P的表達(dá)式和基本不等式求得關(guān)于 的不等式關(guān)系,求得 的范圍,以及等號(hào)成立條件求得x的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,所有正確的序號(hào)有( )
①在同一坐標(biāo)系中,函數(shù)y=2x與函數(shù)y=log2x的圖象關(guān)于直線y=x對(duì)稱(chēng);
②函數(shù)f(x)=ax+1(a>0,且a≠1)的圖象經(jīng)過(guò)定點(diǎn)(0,2);
③函數(shù) 的最大值為1;
④任取x∈R,都有3x>2x .
A.①②③④
B.②
C.①②
D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為 ,直線y=k(x﹣1)與橢圓C交于不同的兩點(diǎn) M,N.
(1)求橢圓C的方程,并求其焦點(diǎn)坐標(biāo);
(2)當(dāng)△AMN的面積為 時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方體ABCD-A′B′C′D′中:
(1)求二面角D′-AB-D的大;
(2)若M是C′D′的中點(diǎn),求二面角M-AB-D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則 (其中a+c≠0)的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1,f(x)=x2 . 如果函數(shù)g(x)=f(x)﹣(x+m)有兩個(gè)零點(diǎn),則實(shí)數(shù)m的值為( )
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求圓心在直線 x 2 y 3 = 0 上,且過(guò)點(diǎn)A(2,-3),B(-2,-5)的圓C的方程.
(1)求圓心在直線 上,且過(guò)點(diǎn)A(2,-3),B(-2,-5)的圓C的方程.
(2)設(shè) 是圓C上的點(diǎn),求 的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)正方形 和 所在平面互相垂直,設(shè) 分別是 和 的中點(diǎn),那么
① ; ② 平面 ;③ ;④ 異面,其中假命題的個(gè)數(shù)為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)H(x0 , y0)在圓C:x2+y2+Dx+Ey+F=0(其中點(diǎn)C為圓心,D2+E2﹣4F>0)外,由點(diǎn)H向圓C引切線,其中一個(gè)切點(diǎn)為M.
求證:|HM|= ;
(1)已知點(diǎn)H(x0 , y0)在圓C:x2+y2+Dx+Ey+F=0(其中點(diǎn)C為圓心,D2+E2﹣4F>0)外,由點(diǎn)H向圓C引切線,其中一個(gè)切點(diǎn)為M.
求證:|HM|= ;
(2)如圖,P是直線x=4上一動(dòng)點(diǎn),以P為圓心的圓P經(jīng)定點(diǎn)B(1,0),直線l是圓P在點(diǎn)B處的切線,過(guò)A(﹣1,0)作圓P的兩條切線分別與l交于E,F(xiàn)兩點(diǎn).
求證:|EA|+|EB|為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com